
   
   

 
   

 
              

           
             

         
 
 

    
 

         
  

 

 
        

 
           

      
 

 
  

  

 
              

             
            

        
           

    
  

   
               

          
          

          
 

One Dimensional Kinematics
 
Challenge Problem Solutions
 

Problem 1: 

As a space shuttle burns up its fuel after take-off, it gets lighter and lighter and its 
acceleration larger and larger. Between the moment it takes off and the time at which it 
has consumed nearly all of its fuel, is the magnitude of the average velocity larger than, 
equal to, or smaller than half its final speed? Explain why. 

Problem 1 Solution: 

In Figure 1, the graph of velocity vs. time for both constant acceleration and non-constant 
acceleration are shown. 

Figure 1: velocity graphs for constant and non-constant acceleration 

When the acceleration is constant, the velocity is a linear function of time. Therefore the 
average velocity is given by (see Figure 1) 

1 1 
v = (v (t) + v ) = vx , f . (1.1)x x ,0 x 2 2 

Hence for an object starting at rest, the average velocity is one half of the final 
velocity. Suppose the space shuttle reaches the same final velocity but its acceleration is 
increasing. As see in Figure 1, the velocity is always less in the non-constant acceleration 
case than in the constant acceleration case, and so the average velocity for the non-
constant acceleration case must be less than one half the final velocity. 

Alternatively, we also defined average velocity as vx ! "x / t f . Since the 
displacement is the area under graph of velocity vs. time, we see from Figure 1 that for 
the case of non-constant acceleration the displacement is less than the constant 
acceleration case, hence the average velocity for the non-constant acceleration case is less 
than one half the final velocity (which is the average velocity for the constant 
acceleration case). 



   
 

          
       

             
            

 
   
 

               
                    

           
               

 
            

    
 

            
 
 

   
 

           
            

               
        
           

            
 

 

 
          

 

Problem 2 

An airliner made an emergency landing at the Los Angeles airport with its nose wheel 
locked in a position perpendicular to its normal rolling position. The forces acting to stop 
the airliner arose from friction due to the nose wheel and the braking effort of the engine 
in reverse thrust mode. The sum of horizontal forces can be modeled as 

F ( ) t = !F + Bt (2.1)horiz 0 

from touchdown at t = 0 until the plane comes to rest at t = ts where F0 > 0, B > 0 . 
Assume the mass of the plane is m . The point of this problem is to figure how far the 
plane traveled from touchdown until it came to a stop. In the questions below express 
your answers in terms of the known quantities F0 , B, ts , m but not in terms of vhoriz,0 . 

a. Find the horizontal component of the velocity when the airplane first touches the 
runway at t = 0 . 

(b) How far did the airplane travel on the ground before stopping? 

Problem 2 Solutions: 

We shall model the landing of the airliner as a one-dimensional motion with a time-
dependent force acting on the airliner. We shall assume the constant B > 0 and that for 
t > ts the force is zero. This means that there is a discontinuity in the force at t = ts . By 
Newton’s Second Law, the acceleration is time-dependent so we can find the find the 
equations that describe the position and the horizontal component of the velocity of the 
jetliner by integration. A motion diagram and graph of the force as a function of time are 
shown below. 

The horizontal component of the velocity and the position graphs are also shown below. 



 
 

        
             

            
           
           

 
             

 
 

 
       

 
   
 

        
 

   

 
           

    
 

   

 
             

             
 

   

 
            

        
 
 

   

We shall first find the acceleration and then integrate the acceleration to find an equation 
for how the horizontal component of the velocity varies with time. We shall use this 
equation to find the time that the plane comes to a stop since the horizontal component of 
the velocity is zero at that instant. Then we shall use the position equation to determine 
how far the airliner has traveled before it came to a stop. 

(b) How far did the plane travel from touchdown until it came to a stop? 

Answer: 

Newton’s Second Law in the horizontal direction is 

!F0 + Bt = ma x. (2.2) 

Solving Eq. (2.2) for the horizontal component of the acceleration, 

!F + Bt 
ax = 0 . (2.3)

m 

We can integrate Eq. (2.3) with respect to time to find the change in the horizontal 
component of the velocity, 

t t # "F0 + Bt ! $ F0 B 2v ( ) t " v = % a dt ! = dt ! = " t + t . (2.4)x x,0 0 x %0 & ' ( m ) m 2m 

When the plane comes to rest at t = ts , the horizontal component of the velocity is zero, 
so we can solve Eq. (2.4) for the initial touchdown horizontal component of the velocity, 

F0 B 2v = ts ! ts . (2.5)x,0 m 2m 

The change in the horizontal position as the airliner is landing is found by integrating the 
horizontal component of the velocity, so from Eq. (2.4) 

t t ! F0 B 2 " F0 2 B 3x t ( ) $ x = v dt # = v $ t# + t# dt # = v t $ t + t . (2.6)0 %0 x %0 & x,0 ' x,0 ( m 2m ) 2m 6m 



 
             

           
       

 

   

 
         

                 
 

 
 

 
          

             
           

 

   

 
               
          

         
 

   

 
             

             
                 

             
           

         
           

    
 

     
 

   

Let’s choose our origin at the point where the airliner touched down on the runway, then 
set t = ts , x0 = 0 , and substitute Eq. (2.5) in Eq. (2.6) to find the distance the airliner 
traveled before it came to a stop, 

F0 2 B 3 F0 2 B 3 F0 2 B 3x t ( ) = t ! t ! t + t = ts ! t . (2.7)s m s 2m s 2m s 6m s 2m 3m s 

(c) Estimate vhoriz,0 , ts , m , and how far the plane traveled from touchdown until it came 

to a stop in order to estimate the coefficients F0 and B . What are the units of these 
coefficients? 

Answer: 

A typical airliner landing speed (fuel tanks nearly empty) is about vx,0 ! 100m s " !1 . (This 

is a little fast, landing speeds are around vx,0 ! 70m s !1" .) Let’s model an airliner as a 
cylinder with a diameter d ! 10m , about l ! 30m long. The volume is then 

l d 2 (30m)( )(10m) 2 3 3! !V ! = ! 2"10 m . (2.8)
4 4 

Let’s assume that if an airliner crashes in the water it should float until it fills with water 
so we will approximate its average density as 1/100 the density of water. Then an 
estimate for the mass of the airliner is 

! 1 3 "3 3 3 4water m ! V = (10 kg m )( 2$10 m )! 2$10 kg. (2.9)# 
100 100 

4(If I look up the mass of a Boeing 737 I find a value equal to 2.7!10 kg with a 
maximum take-off weight 5!10 4 kg weight so we are in the right range.) At take-off the 
fuel is about 80% of the weight so let’s assume that at landing the fuel is about 10% of 
the weight and so we can estimate the mass of the airliner and fuel to be m ! 3 104! kg . 
Let’s assume it takes about ts ! 30s to stop after the airline travels an estimated 

3x t ( ) s ! 1.0 !10 m (this landing distance is likely to be an underestimate, but we only 
want an order of magnitude). We can use these estimates and Eqs. (2.5) and (2.7) to  
estimate the two constants F0 , B . 

We begin by solving Eq. (2.5) for F0 : 

mv Bx,0 ts. (2.10)F0 = 
ts 2 
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( ) ( )( ) 

( ) ( ) ( ) 

1 
3 

3 

4 4 

100m s 30s 
1 10 m 

2 
1 1 30s 

4 3 10 kg 3 3 10 kg 

!" 
# ! 

$ % 
& '!
& '# #( ) 

(2.13) 

Then substitute Eq. (2.10) into Eq. (2.7) to obtain 

1 !
$ 
mv x,0 + 

B " 2 B 3t . (2.11)x t ( ) = t t #s % ss 2m t 2 3m s & s ' 

After a small amount of algebra we can solve Eq. (2.11) for B , 

vx,0 s t ! 1 1 " x t ( ) = + B # % ts
3. (2.12)$s 2 & 4m 3m ' 

vx,0 s t x t ( ) !s 2B = = 
$ 1 1 % 3! t& ' s( 4m 3m )
 

B ! 3 " -3
 7#10 kg m s " 

which to the nearest order of magnitude is 

B " 1 10 kg m s # 4 $ $ !3. (2.14) 

Finally Eq. (2.10) becomes 

4 !1 4 !3) 1 10 kg m s # )(4"10 kg )( 100m s # ( " # 
F0 $ + (30s )(30s ) 2 (2.15) 

5 !2 
0 $ 3 10 kg # m s #F " 

which to the nearest order of magnitude is 

5 !2F0 " 1 10 kg m s # $ $ . (2.16) 

These estimates are very rough and so they are only order of magnitude estimates. 



   
 

            
                

               
    

 

          
 

                 
             

 
 

             
               

                  
         

 
                 

           
 

              

           

 
 
 

    
 

             
            

Problem 3 

A bicycle rider is traveling at a constant speed along a straight road and then gradually 
applies the brakes during a time interval 0 < t < t f until the bicycle comes to a stop. The 
combined mass of the cyclist and bicycle is m . Assume that the magnitude of the braking 
acceleration increases linearly in time according to 

! a = bt / m , 0 < t < t f 

where b > 0 is a constant. At the instant the person applies the brakes, a horizontal 
distance from the rider, the wind blows and snaps an iPod off the branch of the tree. With 
a speed v po directed downwards. The ipod was initially a height h above the ground. The 
cyclist catches the iPod at the instant the cyclist has come to a stop. You may assume that 
the cyclist catches it at a height s above the ground. How far did the bicycle travel while 
it was braking? The gravitational constant is g . 

a)	 At what time t1 did the cyclist catch the ipod? Express your answer in terms of 
the quantities, b , m , h , s , v po , d , and g as needed. 

b)	 What was the initial speed of the cyclist? You may leave your answer in terms of 
t1 from part a) and any other quantities as needed. 

Problem 3 Solutions: 

There are two objects moving, the bicyclist and the iPod. We shall choose a coordinate 
system for the bicyclist and the iPod as shown in the figure below. 



 
 

           
               

               
             

    
 

 
 

  

 
             

       
 

 
  

  

 
              

 

 
  

  

 
        

 

 
  

  

 
         

 

 
  

  

 
         

 

We can integrate the acceleration to find the x-component of the velocity of the bicyclist. 
We then use the equations for free fall to determine the time it takes the iPod to fall a 
distance h ! s . The x-component of the velocity of the bicyclist is zero at this instant so 
we can solve for the initial x-component of the velocity of the bicyclist. The x-component 
of the acceleration is 

b 
a = ! t (3.1)x m 

We can now integrate the x-component of the acceleration of the bicyclist to get the x-
component of the velocity of the bicyclist 

t t # b & b 
vbx (t) ! vbx0 = " axdt = " $% ! t( dt = ! t2 . (3.2) 

0 0 m ' 2m 

So the x-component of the velocity of the cyclist as a function of time is given by 

b
! t2 (3.3)vbx (t) = vbx0 2m 

The y-component of the position of the iPod is given by 

gy(t) = (h ! s) ! t2 (3.4)
2 

The bicyclist catches the iPod at the instant when 

gy(t = t1) = 0 = (h ! s) ! t1
2 (3.5)

2 

We can solve eq. (3.5) for the time the iPod falls: 



 
  

  

 
                  
           

 

 
  

  

 
             

      
 

 
  

  

 
               

 

 
  

  

 
                

       
 

 
  

  

2(h ! s) 
(3.6)t1 = 

g 

The bicyclist comes to a full stop at the instant t1 so we can substitute Eq. (3.6) into Eq. 
(3.3) and solve for the initial x-component of the velocity of the bicyclist 

b 2 b(h ! s)
v = (3.7)bx0 2m

t1 = 
mg 

We can integrate Eq. (3.3) to find that the x-component of the position the bicyclist when 
it just came to a stop 

t1 t1 # b & b 3t1 . (3.8)= dt = ! t2 
( dt = vbx0t1 !xb (t1) ! xb0 " vbx " vbx0 

0 0 $
% 2m ' 6m 

We chose x0 = 0 and so substituting xb0 = 0 and Eq. (3.6) into Eq. (3.8) yields 

b 3! t1 (3.9)xb (t1) = vbx0t1 6m 

Substituting the time t1 and the initial x-component of the velocity of the bicyclist vbx0 , 
gives the distance the cyclist traveled while braking 

3/ 2 3/ 2 
b(h ! s) 2(h ! s) b " 2(h ! s)% b " 2(h ! s)% 

(3.10)xb (t1) = =' ' mg g 
! 

6m #$ g & 3m #$ g & 



     
 

                 
               

 

 
  

  

 
                  

              
       

 
                

 
    

 

 
  

  

 
          

    
 

             
       

 
           

 
           

   
 
 

  
 

    
 

 

Problem 4: Model Rocket 

Roxana launches a home-built model rocket straight up into the air. At t = 0 the rocket is 
at rest at y = 0  with vy ,0 = 0 . The acceleration of the rocket is given by 

$!g + " g ! #t2;&	 0 < t < t
a = % b (4.1)y 

&!g; t > tb'

where tb = (! g / ")1/ 2 is the time that the fuel burns out, g is the acceleration of gravity, 
and ! > 3 / 2 is a positive dimensionless number greater than 3/2. After the fuel burns 
out, the rocket is still moving upwards. 

The goal of this problem is to figure out how high the rocket went up. 

You may find the following integration formula useful 

t2 

! t ndt = 
1 (t2 

n+1 " t1 
n+1 ); n # "1 (4.2) 

t1 n + 1 

a)	 Make a qualitative graphical representation of the velocity and position of the rocket 
before answering the questions below. 

b)	 Explain how you will model the motion of the rocket i.e. how will you determine the 
equations for the position and velocity of the rocket. 

c)	 Explain your strategy that you will use to determine how high the rocket went up. 

d)	 How high did the rocket go up? (This part will tax your integration and algebra skills 
so please be careful.) 

Problem 4 Solutions: 

Motion Diagram and Graphical representation: 



 
 
Model: The rocket undergoes two stages of one-dimensional motion. The first stage has a 
time dependent acceleration and the second stage is free fall with constant acceleration. 
We can determine the velocity and position for the first stage by integrating the 
acceleration. This stage ends when the fuel burns out at t = tb . We need to calculate the 
velocity and position at this time because those values are the initial conditions for the 
free fall stage. We note that the parameter !  must be larger than a certain value or the 
rocket will already have reached its highest point during the burning stage. We now use 
the free fall one dimensional equation for velocity to find the time that it takes the rocket 
to reach its heist point. We then use the position equation to find how high the rocket 
went. 
 
Strategy: 
 
1) Find an expression for the y-component of the velocity   

vy (t)  valid at all times in the 

interval  0 < t < tb , and in particular find the value of the y-component of the velocity 

  
vy (t = tb )  at the end of the interval ( t = tb ) when the fuel burns out. 

 
2) Find an expression for the height   y(t)  valid at all times in the interval   0 < t < tb  and in 
particular find the value   y(t = tb )  at the end of the interval ( t = tb ) when the fuel burns 
out. 
 
3) Now use the final conditions at the end of the burning stage as the initial conditions at 
the beginning of the free fall stage to find an expression for the y-component of the 
velocity   

vy (t)  valid for the time between burnout,  tb , and the time the rocket returns to 

the ground. 
 
4) Since the y-component of the velocity   

vy (t = ttop ) = 0 is zero when the rocket reaches 

its maximum height, us this condition to find the time it takes for the rocket to reach its 
maximum height

 
t = ttop .  

 
5) Now use the final conditions at the end of the burning stage as the initial conditions at 



the beginning of the free fall stage to find an expression for the height   y(t)  valid for the 
time between burnout,  tb , and the time the rocket returns to the ground. In particular, use 
your result for the time it takes to reach the top, to determine how high the rocket went 
up? 
 
Solutions: 
 
 
(1) Find an expression for the velocity   

vy (t)  valid at all times in the interval  0 < t < tb . 

 

 
  
vy (t) ! vy (t = 0) = aydt

0

tb

" = (!g +#g ! $t2 )dt
0

tb

" = (# !1)gt ! 1
3
$t3  (4.3) 

 
Since  

vy ,0 = 0 , 

 
  
vy (t) = (! "1)gt " 1

3
#t3  (4.4) 

 
At time t = tb , the velocity is  
 

 
  
vy (t = tb ) = (! "1)gtb "

1
3
#tb

3  (4.5) 

 
(2) Find an expression for the height   y(t)  valid at all times in the interval  0 < t < tb . 
 

 
  
y(t) ! y0 = vydt

0

tb

" = ((# !1)gt ! 1
3
$t3)dt

0

tb

" =
1
2

(# !1)gt2 !
1

12
$t4  (4.6) 

 
Since we choose y0 = 0 , 
 

 
  
y(t) = 1

2
(! "1)gt2 "

1
12

#t4  (4.7) 

 
At time t = tb , the position is  
 

 
  
y(t = tb ) =

1
2

(! "1)gtb
2 "

1
12

#tb
4  (4.8) 

 
(3) Find an expression for the velocity   

vy (t)  valid for the time between burnout,  tb , and 

the time the rocket returns to the ground. 



 

 
  
vy (t) ! vy (t = tb ) = aydt

tb

t

" = (!g)dt
tb

t

" = !g(t ! tb )  (4.9) 

 
Substitute Eq. (4.5) into Eq. (4.9) yielding 
 

 
  
vy (t) = !g(t ! tb ) + vy (t = tb ) = !g(t ! tb ) + (" !1)gtb !

1
3
#tb

3  (4.10) 

 

Use the fact that 
  
tb

3 = tb
2tb =

!g
"

tb  in Eq. (4.10) to get 

 
  
vy (t) = !gt +"gtb !

1
3
#tb

2tb = !gt +"gtb !
1
3
# "g

#
tb =

2
3
"gtb ! gt  (4.11) 

 
(4) Find the time it takes for the rocket to reach its maximum height. Express your answer 
as a dimensionless factor times tb . 
 

 
  
0 = vy (t = ttop ) =

2
3
!gtb " gttop  (4.12) 

 

 
  
ttop =

2
3
!tb  (4.13) 

 
e) How high did the rocket go up? 
 

 
  
y(t) ! y(t = tb ) = vydt

tb

ttop

" =
2
3
#gtb ! gt

$
%&

'
()

dt =
tb

ttop

"
2
3
#gtb(ttop ! tb ) !

1
2

g(ttop
2 ! tb

2 ) (4.14) 

 
Substitute Eq. (4.13) for 

 
ttop  in Eq. (4.14): 

 
  
y(t) = y(t = tb ) +

2
3
!gtb(

2
3
! "1)tb ) "

1
2

g(
4
9
! 2 "1)tb

2  (4.15) 

 

Substitute Eq. (4.8) for   y(t = tb )  in Eq. (4.15) using 
  
tb

4 =
!g
"

tb
2   yielding 

 

 
  
y(t) = 1

2
(! "1)gtb

2 "
1

12
# !g

#
tb

2 + g(
2
9
! 2 "

2
3
! +

1
2

)tb
2  (4.16) 

 
After a little bit of algebra we get 
 



 
  
y(t) = g(

2
9
! 2 "

1
4
! )tb

2  (4.17) 

Now substitute 
  
tb

2 =
!g
"

 in Eq. (4.17) to finally get how high the rocket traveled. 

 

 
  
y(t) = (

2
9
! "

1
4

)
! 2g 2

#
 (4.18) 



Problem 5: Elevator  
!

 
A person of mass mp  stands on a scale in an elevator of mass mp . The scale reads the 
magnitude of the force F  exerted on it from above in a downward direction. Starting at 
rest at t = 0  the elevator moves upward, coming to rest again at time t = t0 . The 
downward acceleration of gravity is g . The acceleration of the elevator during this period 
is shown graphically above and is given analytically by 
 

 
  
ay (t) = ! "

2!
t0

t . (5.1) 

 
a) Find the maximum speed of the elevator. 
 
b) Find the total distance traveled by the elevator. 
 
 
Problem 5 Solutions: 
 
Part a) 
 
The velocity is the integral of the acceleration. Inspection of the graph shows the 
integral increases until t = t0 = 2  where the velocity reaches its maximum value. That 
value is given by the area of the triangle above the axis. 
 

 
  
vy ,max = (1 / 2)!(t0 / 2) =

!
4

t0 . (5.2) 

 
Part b) 
 



 
  
vy (t) ! vy0 = ay (t)dt

0

t

" = # !
2#
t0

t
$

%&
'

()
dt

0

t

" = #t ! #
t0

t2 . (5.3) 

 
Because   

vy0 = 0 , the y-component of the velocity is 

 
  
vy (t) = !t " !

t0

t2 . (5.4) 

Integrating again to find the position 
 

 
  
y(t) ! y0 = vy (t)dt

0

t

" = #t ! #
t0

t2$

%&
'

()
dt

0

t

" =
#
2

t2 !
#
3t0

t3 . (5.5) 

 
Because we choose   y0 = 0 , 

 
  
y(t) = !

2
t2 "

!
3t0

t3 . (5.6) 

 
The total distance traveled by the elevator is the position at time t = t0  
 

 
  
y(t0 ) =

!
2

t0
2 "

!
3t0

t0
3 =

!
6

t0
2 . (5.7) 



Problem 6: Periodic Motion 
 
The motion of an object moving in one dimension is given by the function 
 
   x(t) = Acos(2!t / T )  (6.1) 
 

a) In your own words, describe the meaning of the constants  T  and  A  that appears 
in the above equation.  

 
b) Find the velocity and acceleration of the object as functions of time. 

 
c) Graph the position, velocity, and acceleration as functions of time. Be sure to 

indicate clearly on your graph the constants  T  and  A . 
 
 
Problem 6 Solutions: 
 
a) The figure below shows two plots of the expression, one scaled to   A = 1,   T = 1 , the 
other with   A = 2 ,   T = 2 . 
 

 
 

The multiplying factor  A  is known as the amplitude (the amplitude is, strictly speaking, 
is 

A ).  The function   x(t)  assumes values between  
! A  and  

A . The constant  T  has 
dimensions of time, and is known at the period of the oscillation.  For the purposes of this 
problem (and many similar problems), a function   x(t)  has periodicity  T  if  
 
   x(t) = x(t + T )  (6.2) 
 
 



a) & c) Let   u(t) = 2!t / T , so that   x(t) = Acos(u(t)) .  The velocity of the object is 
 

 

  

vx (t) =
dx(t)

dt
=

d
dt

Acos(u(t))( ) = !Asin(u(t))
d
dt

u(t) = !Asin(u(t))
2"
T

= !
2"
T

Asin(2"t / T )
 (6.3) 

 
 
 
Plots of the x-component of the velocity corresponding to the expressions for   vx (t)  are 
shown below.  Note that the maximum and minimum of both plots are the same, since for 
the chosen scaling the ration   A / T  is the same for both plots. 
 

 
 

b) & c), continued:  Another differentiation of the expression in  (6.3) gives 
 

 

  

ax (t) =
dvx (t)

dt
=

d
dt

!Asin(u(t))
2"
T

#
$%

&
'(
= !

2"
T

Acos(u(t))
d
dt

u(t) = !
2"
T

#
$%

&
'(

2

Acos(u(t))
2"
T

= !
2"
T

#
$%

&
'(

2

Acossin(2"t / T )

(6.4) 

 
The corresponding plots are shown below.  Note that the maxima of the curve with period 
  T = 1  are larger than those of the curve with the longer period. 
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