One Dimensional Kinematics Non-Uniform Acceleration Concept Questions

Question 1 Non-Uniform Acceleration: Terminal Velocity of Raindrop

A raindrop of initial mass m_0 starts falling from rest under the influence of gravity. and approaches a constant terminal speed v_t . If we assume the air resistance is proportional to the square of the speed, the resulting acceleration is given by the equation

$$\frac{dv}{dt} = g - k v^2$$

where $g = 9.8 \text{ m} \cdot \text{s}^{-2}$ and k is a constant. What is the terminal speed?

- 1. Impossible to tell without integrating the expression for acceleration to find the speed.
- 2. $v_t = g / k$
- 3. $v_t = \sqrt{g/k}$
- 4. $v_t = 0$

Question 2 A particle, starting at rest at t = 0, experiences a non-constant acceleration $a_x(t)$. It's change of position can be found by

- 1) Differentiating $a_x(t)$ twice.
- 2) Integrating $a_x(t)$ twice.

$$3) \quad \frac{1}{2}a_x(t)t^2.$$

- 4) None of the above.
- 5) Two of the above.

Question 3 An airliner made an emergency landing at the Los Angeles airport with its nose wheel locked in a position perpendicular to its normal rolling position. The component of the acceleration in the horizontal direction of motion is given by

$$a_{\text{horiz}}(t) = -B_0 + B_1 t$$

from touchdown at t = 0 until the plane comes to rest at $t = t_s$ where $B_0 > 0$, $B_1 > 0$. What was the horizontal speed of the airplane at time t = 0 when it first touched down

1)
$$v_{\text{horiz}}(t=0) = -B_0$$

2)
$$v_{\text{horiz}}(t=0) = -B_0 t_s + B_1 \frac{t_s^2}{2}$$

3)
$$v_{\text{horiz}}(t=0) = B_0 t_s - B_1 \frac{t_s}{2}$$

- 4) $v_{\text{horiz}}(t=0) = (-B_0 + B_1 t_s)t_s$
- 5) $v_{\text{horiz}}(t=0) = -(-B_0 + B_1 t_s)t_s$

8.01SC Physics I: Classical Mechanics

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.