One Dimensional Kinematics Non-Uniform Acceleration Concept Questions

Question 1 Non-Uniform Acceleration: Terminal Velocity of Raindrop

A raindrop of initial mass m_{0} starts falling from rest under the influence of gravity. and approaches a constant terminal speed v_{t}. If we assume the air resistance is proportional to the square of the speed, the resulting acceleration is given by the equation

$$
\frac{d v}{d t}=g-k v^{2}
$$

where $g=9.8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ and k is a constant. What is the terminal speed?

1. Impossible to tell without integrating the expression for acceleration to find the speed.
2. $v_{t}=g / k$
3. $v_{t}=\sqrt{g / k}$
4. $v_{t}=0$

Answer 3. When the raindrop approaches terminal speed, the rate of change of the speed approaches zero, so $g-k v^{2} \rightarrow 0, v \rightarrow v_{t}=\sqrt{g / k}$.

Question 2 A particle, starting at rest at $t=0$, experiences a non-constant acceleration $a_{x}(t)$. It's change of position can be found by

1) Differentiating $a_{x}(t)$ twice.
2) Integrating $a_{x}(t)$ twice.
3) $\frac{1}{2} a_{x}(t) t^{2}$.
4) None of the above.
5) Two of the above.

Answer 2. The change in x-component of the velocity for an interval $[0, t]$ is the integral of the x-component of acceleration with respect to time,

$$
v_{x}(t)-v_{x}(0)=\int_{t^{\prime}=0}^{t^{\prime}=t} a_{x}\left(t^{\prime}\right) d t^{\prime}
$$

The displacement for an interval $[0, t]$ is the integral of the x-component of acceleration with respect to time,

$$
x(t)-x(0)=\int_{t^{\prime}=0}^{t^{\prime}=t} v_{x}\left(t^{\prime}\right) d t^{\prime}
$$

When $a_{x}(t)$ is independent of time, i.e. constant, then

$$
\begin{aligned}
& v_{x}(t)-v_{x}(0)=a_{x} t \\
& x(t)=x(0)+v_{x}(0) t+a_{x} t \frac{1}{2} a_{x} t^{2},
\end{aligned}
$$

however in this question, $a_{x}(t)$ is non-constant so the correct answer is that you need to integrate twice.

Question 3 An airliner made an emergency landing at the Los Angeles airport with its nose wheel locked in a position perpendicular to its normal rolling position. The component of the acceleration in the horizontal direction of motion is given by

$$
a_{\text {horiz }}(t)=-B_{0}+B_{1} t
$$

from touchdown at $t=0$ until the plane comes to rest at $t=t_{\mathrm{s}}$ where $B_{0}>0, B_{1}>0$. What was the horizontal speed of the airplane at time $t=0$ when it first touched down

1) $v_{\text {horiz }}(t=0)=-B_{0}$
2) $\quad v_{\text {horiz }}(t=0)=-B_{0} t_{s}+B_{1} \frac{t_{s}^{2}}{2}$
3) $v_{\text {horiz }}(t=0)=B_{0} t_{s}-B_{1} \frac{t_{s}{ }^{2}}{2}$
4) $v_{\text {horiz }}(t=0)=\left(-B_{0}+B_{1} t_{s}\right) t_{s}$
5) $v_{\text {horiz }}(t=0)=-\left(-B_{0}+B_{1} t_{s}\right) t_{s}$

Answer 3. The change in the horizontal component of the velocity of the plane is found by integrating the horizontal component of the acceleration

$$
v_{\text {horiz }}\left(t_{s}\right)-v_{\text {horiz }}(0)=\int_{t^{\prime}=0}^{t^{\prime}=t_{s}} a_{x}\left(t^{\prime}\right) d t^{\prime}=\int_{t^{\prime}=0}^{t^{\prime}=t_{s}}\left(-B_{0}+B_{1} t^{\prime}\right) d t^{\prime}=-B_{0} t_{s}+\frac{B_{1}}{2} t_{s}^{2} .
$$

The plane came to a stop at $t=t_{\mathrm{s}}$ so $v_{\text {horiz }}\left(t_{s}\right)=0$. Therefore $-v_{\text {horiz }}(0)=-B_{0} t_{s}+\frac{B_{1}}{2} t_{s}^{2}$ and so $v_{\text {horiz }}(0)=B_{0} t_{s}-\frac{B_{1}}{2} t_{s}{ }^{2}$.

MIT OpenCourseWare
http://ocw.mit.edu

8.01SC Physics I: Classical Mechanics

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

