One Dimensional Kinematics Non-Uniform Acceleration Concept Questions

Question 1 Non-Uniform Acceleration: Terminal Velocity of Raindrop

A raindrop of initial mass m_0 starts falling from rest under the influence of gravity. and approaches a constant terminal speed v_t . If we assume the air resistance is proportional to the square of the speed, the resulting acceleration is given by the equation

$$\frac{dv}{dt} = g - k v^2$$

where $g = 9.8 \text{ m} \cdot \text{s}^{-2}$ and k is a constant. What is the terminal speed?

- 1. Impossible to tell without integrating the expression for acceleration to find the speed.
- 2. $v_t = g / k$
- 3. $v_t = \sqrt{g/k}$
- 4. $v_{t} = 0$

Answer 3. When the raindrop approaches terminal speed, the rate of change of the speed approaches zero, so $g - kv^2 \rightarrow 0$, $v \rightarrow v_t = \sqrt{g/k}$.

Question 2 A particle, starting at rest at t = 0, experiences a non-constant acceleration $a_x(t)$. It's change of position can be found by

- 1) Differentiating $a_{x}(t)$ twice.
- 2) Integrating $a_{r}(t)$ twice.
- 3) $\frac{1}{2}a_x(t)t^2$.
- 4) None of the above.
- 5) Two of the above.

Answer 2. The change in x-component of the velocity for an interval [0,t] is the integral of the x-component of acceleration with respect to time,

$$v_x(t) - v_x(0) = \int_{t'=0}^{t'=t} a_x(t')dt'$$
.

The displacement for an interval [0,t] is the integral of the x-component of acceleration with respect to time,

$$x(t) - x(0) = \int_{t'=0}^{t'=t} v_x(t')dt'.$$

When $a_{\rm r}(t)$ is independent of time, i.e. constant, then

$$v_x(t) - v_x(0) = a_x t$$

$$x(t) = x(0) + v_x(0)t + a_x t \frac{1}{2} a_x t^2,$$

however in this question, $a_x(t)$ is non-constant so the correct answer is that you need to integrate twice.

Question 3 An airliner made an emergency landing at the Los Angeles airport with its nose wheel locked in a position perpendicular to its normal rolling position. The component of the acceleration in the horizontal direction of motion is given by

$$a_{\text{horiz}}(t) = -B_0 + B_1 t$$

from touchdown at t = 0 until the plane comes to rest at $t = t_s$ where $B_0 > 0$, $B_1 > 0$. What was the horizontal speed of the airplane at time t = 0 when it first touched down

- 1) $v_{\text{horiz}}(t=0) = -B_0$
- 2) $v_{\text{horiz}}(t=0) = -B_0 t_s + B_1 \frac{t_s^2}{2}$
- 3) $v_{\text{horiz}}(t=0) = B_0 t_s B_1 \frac{t_s^2}{2}$
- 4) $v_{\text{horiz}}(t=0) = (-B_0 + B_1 t_s)t_s$
- 5) $v_{\text{horiz}}(t=0) = -(-B_0 + B_1 t_s)t_s$

Answer 3. The change in the horizontal component of the velocity of the plane is found by integrating the horizontal component of the acceleration

$$v_{\text{horiz}}(t_s) - v_{\text{horiz}}(0) = \int_{t'=0}^{t'=t_s} a_x(t')dt' = \int_{t'=0}^{t'=t_s} (-B_0 + B_1 t')dt' = -B_0 t_s + \frac{B_1}{2} t_s^2.$$

The plane came to a stop at $t = t_s$ so $v_{\text{horiz}}(t_s) = 0$. Therefore $-v_{\text{horiz}}(0) = -B_0 t_s + \frac{B_1}{2} t_s^2$ and so $v_{\text{horiz}}(0) = B_0 t_s - \frac{B_1}{2} t_s^2$.

MIT OpenCourseWare http://ocw.mit.edu

8.01SC Physics I: Classical Mechanics

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.