One Dimensional Kinematics

Non-Constant Acceleration

Velocity as the Integral of Acceleration

the area under the graph of the x-component of the acceleration vs. time is the change in velocity

$$
\begin{aligned}
& \int_{t^{\prime}=t}^{t_{0}^{\prime}} a_{x}\left(t^{\prime}\right) d t^{\prime} \equiv \lim _{\Delta t_{i} \rightarrow 0} \sum_{i=1}^{i=N} a_{x}\left(t_{i}\right) \Delta t_{i}=\operatorname{Area}\left(a_{x}, t\right) \frac{t_{t}}{t i=0}{ }_{t 2 t 3}^{t_{t}} \\
& \int_{t^{\prime}=0}^{t^{\prime}=t} a_{x}\left(t^{\prime}\right) d t^{\prime}=\int_{t^{\prime}=0}^{t^{\prime}=t} \frac{d v_{x}}{d t} d t^{\prime}=\int_{v_{x}^{\prime}=v_{x}(t=0)}^{v_{x}^{\prime}=v_{x}(t)} d v_{x}^{\prime}=v_{x}(t)-v_{x, 0}
\end{aligned}
$$

Position as the Integral of Velocity

area under the graph of x-component of the velocity vs. time is the displacement

$$
\begin{gathered}
v_{x}(t) \equiv \frac{d x}{d t} \\
\int_{t^{\prime}=0}^{t^{\prime}=t} v_{x}\left(t^{\prime}\right) d t^{\prime}=x(t)-x_{0}
\end{gathered}
$$

Summary: Time Dependent Acceleration

- Acceleration is a nonconstant function of time

$$
a_{x}(t)
$$

- Change in velocity

$$
v_{x}(t)-v_{x, 0}=\int_{t^{\prime}=0}^{t^{\prime}=t} a_{x}\left(t^{\prime}\right) d t^{\prime}
$$

- Change in position

$$
x(t)-x_{0}=\int_{t^{\prime}=0}^{t^{\prime}=t} v_{x}\left(t^{\prime}\right) d t^{\prime}
$$

Worked Example: Nonconstant acceleration

- Consider an object released at time $t=0$ with an initial x component of velocity $v_{x, 0}$, located at position x_{0}, and accelerating according to

$$
a_{x}(t)=b_{0}+b_{1} t+b_{2} t^{2}
$$

- Find the velocity and position as a function of time.

Worked Example: Nonconstant acceleration

Velocity:

$$
\begin{aligned}
& v_{x}(t)=v_{x, 0}+\int_{t=0}^{t^{\prime}=t} a_{x}\left(t^{\prime}\right) d t^{\prime} \\
& =v_{x, 0}+\int_{t=0}^{t^{\prime}=t}\left(b_{0}+b_{1} t^{\prime}+b_{2} t^{2}\right) d t^{\prime}=v_{x, 0}+b_{0} t^{\left.t^{\prime}\right|_{t}=t}+\left.\frac{1}{2} b_{1} t^{\prime 2}\right|_{t^{\prime}=t} ^{t=t}+\left.\frac{1}{3} b_{2} t^{33}\right|_{t^{\prime}=0} ^{t^{\prime}=t} \\
& =v_{x, 0}+b_{0} t+\frac{1}{2} b_{1} t^{2}+\frac{1}{3} b_{2} t^{3}
\end{aligned}
$$

Position:

$$
\begin{aligned}
& x(t)=x_{0}+\int_{t=0}^{t} v_{x}\left(t^{\prime}\right) d t^{\prime}= \\
& =x_{0}+\int_{t^{\prime}=0}^{t=t}\left(v_{x, 0}+b_{0} t^{\prime}+\frac{1}{2} b_{1} t^{\prime 2}+\frac{1}{3} b_{2} t^{\prime 3}\right) d t^{\prime}=v_{x, 0} t+\frac{1}{2} b_{0} t^{2}+\frac{1}{6} b_{1} t^{3}+\frac{1}{12} b_{2} t^{\prime 4}
\end{aligned}
$$

Checkpoint Problem: NonConstant Acceleration:

Consider an object released at time $t=0$ with an initial x-component of velocity $v_{x, 0}$, located at position x_{0} and accelerating according to

$$
a_{x}(t)=b_{0}-b_{1} t
$$

Find the velocity and position as a function of time.

Checkpoint Problem: Sports Car

At $t=0$, a sports car starting at rest at $x=0$ accelerates with an x component of acceleration given by

$$
a_{x}(t)=\alpha t-\beta t^{3}, \text { for } 0<t<(\alpha / \beta)^{1 / 2} .
$$

and zero afterwards with $\alpha, \beta>0$.
(1) Find expressions for the velocity and position vectors of the sports as functions of time for $0<t<(\alpha / \beta)^{1 / 2}$
(2) Sketch graphs of the x-component of the position, velocity and acceleration of the sports car as a function of time for $0<t<(\alpha / \beta)^{1 / 2}$.

MIT OpenCourseWare
http://ocw.mit.edu

8.01SC Physics I: Classical Mechanics

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

