
Module 6: Two and Three Dimensional Kinematics 

6.1 Introduction to the Vector Description of Motion in Two and Three 
Dimensions 

So far we have introduced the concepts of kinematics to describe motion in one 
dimension; however we live in a multidimensional universe. In order to explore and 
describe motion in this universe, we begin by looking at examples of two-dimensional 
motion, of which there are many; planets orbiting a star in elliptical orbits or a projectile 
moving under the action of uniform gravitation are two common examples. 

We will now extend our definitions of position, velocity, and acceleration for an 
object that moves in two dimensions (in a plane) by treating each direction 
independently, which we can do with vector quantities by resolving each of these 
quantities into components. For example, our definition of velocity as the derivative of 
position holds for each component separately. In Cartesian coordinates, in which the 
directions of the unit vectors do not change from place to place, the position vector 
r !( ) t with respect to some choice of origin for the object at time t is given by 

r !( ) t = x t ( ) î + y t ( ) ĵ . (6.1.1) 

The velocity vector v !( ) t at time t is the derivative of the position vector, 

v !( ) t = 
dx t ( ) î + 

dy t ( ) ĵ ! vx ( ) t î + vy ( ) t ĵ , (6.1.2) 
dt dt 

where vx ( ) t ! dx t ( ) / dt and vy ( ) t ! dy t ( ) / dt denote the x - and y -components of the 
velocity respectively. 

The acceleration vector a !( ) t is defined in a similar fashion as the derivative of the 
velocity vector, 

a !( ) t = 
dv x ( ) t ˆ dv y ( ) t ĵ ! ax ( ) t î + ay ( ) t ĵ, (6.1.3) i + 
dt dt 

where ax ( ) ! dv x t dt and ay t ! dv y ( ) / t ( ) / ( ) t dt denote the x - and y -components of the 
acceleration. 
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6.2 Reference Frames 

In order to describe physical events that occur in space and time such as the motion of 
bodies, we introduced a coordinate system. A space-time event can now be specified by 
its spatial and temporal coordinates. In particular, the position of a moving body can be 
described by space-time events specified by the space-time coordinates. You can place an 
observer at the origin of coordinate system. The coordinate system with your observer 
acts as a reference frame for describing the position, velocity, and acceleration of bodies. 
The position vector of the body depends on the choice of origin (location of your 
observer) but the displacement, velocity, and acceleration vectors are independent of the 
location of the observer. 

You can always choose a second reference frame that is moving with respect to 
the first reference frame. Then the position, velocity and acceleration of bodies as seen by 
the different observers do depend on the relative motion of the two reference frames. The 
relative motion can be described in terms of the relative position, velocity, and 
acceleration of the observer at the origin, O , in reference frame S with respect to a 
second observer located at the origin, O! , in reference frame S! . 

! 
Let the vector R point from the origin of frame S to the origin of reference 

frame S! . Suppose an object is located at a point 1. Denote the position vector of the 
object with respect to origin of reference frame S by r ! . Denote the position vector of the 
object with respect to origin of reference frame S! by r!! (Figure 6.1). 

Figure 6.1 Two reference frames. 

The position vectors are related by 

r !! = r ! " R 
! 

(6.2.1) 

These coordinate transformations are called the Galilean Coordinate 
Transformations. They enable the observer in frame S to predict the position vector in 
frame S! , based only on the position vector in frame S and the relative position of the 
origins of the two frames. 
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The relative velocity between the two reference frames is given by the time ! 
derivative of the vector R , defined as the limit as of the displacement of the two origins 
divided by an interval of time, as the interval of time becomes infinitesimally small, 

! dR 
! 
. (6.2.2) V = dt 

Relatively Inertial Reference Frames 

If the relative velocity between the two reference frames is constant, then the relative 
acceleration between the two reference frames is zero, 

A 
! 
= ddt 
V 
! 
= 0 
! 
. (6.2.3) 

When two reference frames are moving with a constant velocity relative to each other as 
above, the reference frames are considered to be relatively inertial reference frames. 

Law of Addition of Velocities: Newtonian Mechanics 

Suppose the object in Figure 6.1 is moving; then observers in different reference 
frames will in general measure different velocities. Denote the velocity of the object in 
frame S by v ! = dr ! ! !dt , and the velocity of the object in frame S! by v! = dr! dt ! . Since 
the derivative of the position is velocity, the velocities of the object in two different 
reference frames are related according to  

dr !! dr ! dR 
! 

= " (6.2.4) 
dt ! dt dt 

or 

v !! = v ! " V 
! 

(6.2.5) 

This is called the Law of Addition of Velocities. 

6.2.1 Example: Relative Velocities of Two Moving Planes 

An airplane A is traveling northeast with a speed of vA = 160 m ! s-1 . A second airplane 

B is traveling southeast with a speed of vB = 200 m ! s-1 . 

a) Choose a coordinate system and write down an expression for the velocity of each 
airplane as vectors, v! A and v! B . Carefully use unit vectors to express your answer. 

b) Sketch the vectors v! A and v! B on your coordinate system. 
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c) Find a vector expression that expresses the velocity of aircraft A as seen from an 
observer flying in aircraft B. Calculate this vector. What is its magnitude and direction? 
Sketch it on your coordinate system. 

From the information given in the problem we draw the velocity vectors of the airplanes 
as shown in Figure 6.2A. 

Figure 6.2A: Motion of two planes Figure 6.2B: Coordinate System 

An observer at rest with respect to the ground defines a reference frame S . Choose a 
coordinate system shown in Figure 6.2B. According to this observer, airplane A is 
moving with velocity v! A = vA cos!A î + vA sin!A ĵ , and airplane B is moving with 

velocity v! B = vB cos!B î + vB sin!B ĵ . According to the information given in the problem 
airplane A flies northeast so !A = " / 4 and airplane B flies southeast east so !B = "# / 4 . 

Thus v! A = (80 2 m ! s-1 )î + (80 2 m ! s-1 ) ĵ and v! B = (100 2 m ! s-1 )î " (100 2 m ! s-1 ) ĵ 

Consider a second observer moving along with airplane B, defining reference frame S ! . 
What is the velocity of airplane A according to this observer moving in airplane B ? The 
velocity of the observer moving along in airplane B with respect to an observer at rest on 
the ground is just the velocity of airplane B and is given by 
V 
! 
= v! B = vB cos!B î + vB sin!B ĵ . Using the Law of Addition of Velocities, Equation 

(6.2.5), the velocity of airplane A with respect to an observer moving along with 
Airplane B is given by 

!
 !
 !

cos#A ̂i + vA sin#A ĵ) " (vB cos#B î + vB sin#B ĵ)V = (vAv!A "
= vA 

= (vA cos#A " vB cos#B )î + (vA sin#A " vB sin#B ) ĵ 

= ((80 2 m $ s-1 ) " (100 2 m $ s-1 ))î + ((80 2 m $ s-1 ) + (100 2 m $ s-1 )) ĵ . (6.2.6) 

= "(20 2 m $ s-1 )î + (180 2 m $ s-1 ) ĵ 
= v!Ax ̂i + v!Ay ̂j 
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Figure 6.2C shows the velocity of airplane A with respect to airplane B in reference 
frame S ! . 

Figure 6.2C Airplane A as seen from observer in airplane B 

We can now use Equation (2.3.5) to find the magnitude of velocity of airplane A as seen 
by an observer moving with airplane B, 

v! A! = (v!Ax 
2 + v!Ay 

2 )1/ 2 = (("20 2 m # s-1 )2 + (180 2 m # s-1 )2 )1/ 2 = 256 m # s-1 . (6.2.7) 

We can now use Equation (2.3.5) to find the angle of velocity of airplane A as seen by 
an observer moving with airplane B, 

"!A = tan#1(v!Ay / v!Ax ) = tan#1((180 2 m $ s-1 ) / (#20 2 m $ s-1 )) 
. (6.2.8) 

= tan#1(#9) = 180! # 83.7! = 96.3! 

Figure 6.2C shows the velocity of airplane A with respect to airplane B in reference 
frame S ! . 
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6.3 Projectile Motion 

A special case of two-dimensional motion occurs when the vertical component of the 
acceleration is constant and the horizontal component is zero. Then the complete set of 
equations for position and velocity for each independent direction of motion are given by 

r !( ) t = x t ( ) î + y t ( ) ĵ = (x0 + vx,0 t )î + #
! y0 + vy ,0 t + 

1 
a t 2 " ĵ , (6.3.1) 

% 2 y 
&
$ 

v !( ) t = v ( ) t î + v ( ) t ĵ = v î +(v + a t ) ĵ , (6.3.2) x y x,0 y ,0 y 

a !( ) t = ax ( ) t î + ay ( ) t ĵ = ay ĵ . (6.3.3) 

Consider the motion of a body that is released with an initial velocity v! 0 at a 
height h above the ground. Two paths are shown in Figure 6.14. 

Figure 6.14 Actual orbit and parabolic orbit of a projectile 

The dotted path represents a parabolic trajectory and the solid path represents the actual 
orbit. The difference between the paths is due to air resistance. There are other factors 
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that can influence the path of motion; a rotating body or a special shape can alter the flow 
of air around the body, which may induce a curved motion or lift like the flight of a 
baseball or golf ball. We shall begin our analysis by neglecting all influences on the body 
except for the influence of gravity. 

We shall choose coordinates with our y -axis in the vertical direction with ĵ 
directed upwards and our x-axis in the horizontal direction with î directed in the 
direction that the body is moving horizontally. We choose our origin to be the place 
where the body is released at time t = 0 . Figure 6.15 shows our coordinate system with 
the position of the body at time t and the coordinate functions x t ( ) and y t ( ) . 

Figure 6.15 A coordinate sketch for parabolic motion. 

The coordinate function y t ( ) represents the distance from the body to the origin along 
the y -axis at time t , and the coordinate function x t ( ) represents the distance from the 
body to the origin along the x -axis at time t . 

The y -component of the acceleration, 

ay = !g, (6.3.4) 

is a constant and is independent of the mass of the body. Notice that ay < 0 ; this is 
because we chose our positive y -direction to point upwards. 

Since we are ignoring the effects of any horizontal forces, the acceleration in the 
horizontal direction is zero, 

ax = 0; (6.3.5) 

therefore the x -component of the velocity remains unchanged throughout the flight. 
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Kinematic Equations of Motion 

The kinematic equations of motion for the position and velocity components of the object 
are 

x t ( ) = x0 + vx,0 t , (6.3.6) 

vx ( ) t = vx,0 , (6.3.7) 

1 y(t) = y0 + vy ,0 t ! 
2 

g t2 , (6.3.8) 

vy ( ) t = vy ,0 ! g t . (6.3.9) 

Initial Conditions 

In these equations, the initial velocity vector is 

v ! 0 ( ) t = vx,0 î + vy ,0 ĵ . (6.3.10) 

Often the description of the flight of a projectile includes the statement, “a body is 
projected with an initial speed v0 at an angle !0 with respect to the horizontal.” The 
vector decomposition diagram for the initial velocity is shown in Figure 6.16. The 
components of the initial velocity are given by 

vx,0 = v0 cos !0 , (6.3.11) 

vy ,0 = v0 sin !0 . (6.3.12) 

Figure 6.16 A vector decomposition of the initial velocity 

Since the initial speed is the magnitude of the initial velocity, we have 
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v0 = (vx 2,0 + vy 
2
,0 )

1/ 2 
. (6.3.13) 

The angle !0 is related to the components of the initial velocity by 

# v $ 
!0 = tan "1 %% v

y ,0 
&&. (6.3.14) 

' x,0 ( 

The initial position vector appears with components 

r ! 0 = x0 î + y0 ĵ . (6.3.15) 

Note that the trajectory in Figure 6.16 has x0 = y0 = 0 , but this will not always be the 
case, as in the example below. 

Example: Time of Flight and Maximum Height of a Projectile 

A person throws a stone at an initial angle !0 = 45! from the horizontal with an initial 

speed of v0 = 20 m ! s-1 . The point of release of the stone is at a height d = 2 m above the 
ground. You may neglect air resistance. a) How long does it take the stone to reach the 
highest point of its trajectory? b) What was the maximum vertical displacement of the 
stone? Ignore air resistance. 

Solution: 

Choose the origin on the ground directly underneath the point where the stone is released. 
We choose upwards for the positive y-direction and along the projection of the path of 
the stone along the ground for the positive x-direction. Set t = 0 the instant the stone is 
released. At t = 0 the initial conditions are then x0 = 0 and y0 = d . The initial x- and y-
components of the velocity are given by Eq. (6.3.11) and Eq. (6.3.12) 

The y-component of the position of the stone y(t) is plotted as a function of time in 
Figure 3 with d = 2 m , v0 = 20 m ! s-1 , and !0 = 45! . At time t the stone has coordinates 
(x(t), y(t)) . These coordinate functions are shown in Figure 6.17. 
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Figure 6.17: Coordinate functions for stone 

The y-component of the position of the stone, y(t) , is plotted as a function of time in 
Figure 6.18. The slope of this graph at any time t yields the instantaneous y-component 
of the velocity vy (t) at that time t . 

Figure 6.18: Plot of the y-component of the position as a function of time 

There are several important things to notice about Figures 6.17 and 6.18. The first point is 
that the abscissa axes are different in both figures, Figure 6.17 is a plot of y vs. x and 
Figure 6.18 is a plot of y vs. t . The second thing to notice is that at t = 0 , the slope of 
the graph in Figure 6.18 is equal to Let t = ttop correspond to the instant the stone is at its 
maximal vertical position. or the highest point in the flight. The final thing to notice 
about Figure 6.18 is that at t = ttop the slope is zero  or vy (t = ttop ) = 0 . Therefore 

vy (ttop ) = v0 sin!0 " gttop = 0 . 

We can solve this equation for ttop , 
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v0 sin!0 = 
(20 m " s-1 )sin(45! )

t = = 1.44 s .top g 9.8 m " s-2 

The y-component of the velocity as a function of time is graphed in Figure 6.19. 

Figure 6.19: y-component of the velocity as a function of time 

Notice that at t = 0 the intercept is positive indicting the initial y-component of the 
velocity is positive which means that the stone was thrown upwards. The y-component of 
the velocity changes sign at t = ttop indicating that it is reversing its direction and starting 
to move downwards. 

We can now use Eq. (6.3.8) to find the maximal height of the stone above the ground 

sin!0 1 # v0 sin!0 
& 2y(t = ttop ) = d + v0 sin!0 

v0 

g 
" 

2 
g 
$% g '( 

, (6.3.16) 
v0

2 sin2 !0 = 2 m + 
(20 m ) s-1)2 sin2(45! )

= d + = 12.2 m 
2g 2(9.8 m ) s-2 ) 

Orbit equation 

So far our description of the motion has emphasized the independence of the spatial 
dimensions, treating all of the kinematic quantities as functions of time. We shall now 
eliminate time from our equation and find the orbit equation of the body. We begin with 
Equation (6.3.6) for the x -component of the position, 

x t ( ) = x0 + vx,0 t (6.3.17) 
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and solve Equation (6.3.17) for time t as a function of x t ( ) , 

t = 
x t ( ) ! x0 . (6.3.18) 
vx,0 

The vertical position of the body is given by Equation (6.3.8), 

y t ( ) = y0 + vy ,0 t ! 
1 g t 2. (6.3.19) 
2


We then substitute the above expression, Equation (6.3.18) for time t into our equation 
for the y -component of the position yielding 

2


y t ( ) = y0 + vy ,0 $$
! x t ( ) # x0 %%

" 
# 
1 
g 
!
$$ 
x t ( ) # x0 "%% . (6.3.20) 

v 2 v
& x,0 ' & x,0 ' 

This expression can be simplified to give


y t ( ) = y0 + 
vy ,0 1 g (x t ( ) 2 ! 2 ( ) x t x + x2 ). (6.3.21)

vx,0 
(x t ( ) ! x0 )! 

2 vx,0

2 0 0 

This is seen to be an equation for a parabola by rearranging terms to find 

y t ( ) = # 
1 g 

x t ( ) 2 + $
! g x 0 + 

vy ,0 
%
" 
x t ( ) # 

vy ,0 x0 # 
1 g 

2 2
2 vx,0 $
& vx,0 vx,0 %' vx,0 2 vx 

2
,0 

x0
2 + y0. (6.3.22)


The graph of y t ( ) as a function of x t ( ) is shown in Figure 6.20. 


Figure 6.20 The parabolic orbit 
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Note that at any point (x t ( ), y t ( ) ) along the parabolic trajectory, the direction of the 
tangent line at that point makes an angle ! with the positive x -axis as shown in Figure 
6.20. This angle is given by 

! = tan "1 #% 
dy $ , (6.3.23) 
' dx (

& 

where / y x ( ) ( ( )) at the point (x t ( ) ) .dy dx is the derivative of the function = y x t ( ), y t 

The velocity vector is given by 

v !( ) t = 
dx t ( ) î + 

dy t ( ) ĵ ! v ( ) t î + v ( ) t ĵ (6.3.24) 
dt dt x y 

The direction of the velocity vector at a point (x t ( ), y t ( ) ) can be determined from the 
components. Let ! be the angle that the velocity vector forms with respect to the positive 
x -axis. Then 

"1 y dy dt $ "1# v ( ) t $ "1 # / # dy $
&. (6.3.25) ! = tan % 

' vx ( ) t 
&
( 
= tan %

' dx / dt &( 
= tan %

' dx ( 

Comparing our two expressions we see that ! = " ; the slope of the graph of y t ( ) vs. x t ( )
at any point determines the direction of the velocity at that point. We cannot tell from our 
graph of ( ) how fast the body moves along the curve; the magnitude of the velocity y x 
cannot be determined from information about the tangent line. 

If, as in Figure 6.16, we choose our origin at the initial position of the body at 
t = 0 , then x0 = 0 and y0 = 0 . Our orbit equation, Equation (6.3.22) can now be 
simplified to 

y t ( ) = ! 
1 g 

x t ( ) 2 + 
vy ,0 x t ( ). (6.3.26) 

2 vx 
2
,0 vx,0 

Example: Hitting the Bucket 

A person is standing on a ladder holding a pail. The person releases the pail from rest 
at a height h1 above the ground. A second person standing a horizontal distance s2 

from the pail aims and throws a ball the instant the pail is released in order to hit the 
pail. The person releases the ball at a height h2 above the ground, with an initial 
speed v0 , and at an angle !0 with respect to the horizontal. You may ignore air 
resistance. 
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a)	 Find an expression for the angle !0 that the person aims the ball in order to hit the 
pail. 

b)	 Find an expression for the height above the ground where the collision occurred 
as a function of the initial speed of the ball v0 , and the quantities h1 , h2 , and s2 . 

I. Understand – get a conceptual grasp of the problem 

There are two objects involved in this problem. Each object is undergoing free fall, so 
there is only one stage each. The pail is undergoing one dimensional motion. The ball is 
undergoing two dimensional motion. The parameters h1 , h2 , and s2 are unspecified, so 
our answers will be functions of those symbolic expressions for the quantities. Figure 
6.21 shows a sketch of the motion of all the bodies in this problem. 

Figure 6.21: Sketch of motion. 

Since the acceleration is unidirectional and constant, we will choose Cartesian 
coordinates, with one axis along the direction of acceleration. Choose the origin on the 
ground directly underneath the point where the ball is released. We choose upwards for 
the positive y-direction and towards the pail for the positive x-direction. 

We choose position coordinates for the pail as follows. The horizontal coordinate is 
constant and given by x1 = s2 . The vertical coordinate represents the height above the 
ground and is denoted by y1(t) . The ball has coordinates (x2 (t), y2 (t)) . We show these 
coordinates in the Figure 6.22. 
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Figure 6.22: Coordinate System 

II. Devise a Plan - set up a procedure to obtain the desired solution 

Find an expression for the angle !0 that the person throws the ball as a function of h1 , 
h2 , and s2 . 

Find an expression for the time of collision as a function of the initial speed of the 
ball v0 , and the quantities h1 , h2 , and s2 . 

Find an expression for the height above the ground where the collision occurred as a 
function of the initial speed of the  ball v0 , and the quantities h1 , h2 , and s2 . 

Model: The pail undergoes constant acceleration (ay )1 = !g in the vertical direction 
downwards and the ball undergoes uniform motion in the horizontal direction and 
constant acceleration downwards in the vertical direction, with (ax )2 = 0 and (ay )2 = !g . 

Equations of Motion for Pail: 

The initial conditions for the pail are (vy ,0 )1 = 0 , x1 = s2 , ( y0 )1 = h1 . Since the pail moves 

vertically, the pail always satisfies the constraint condition x1 = s2 and vx ,1 = 0 . The 
equations for position and velocity of the pail simplify to 

1 y1(t) = h1 ! gt2 (6.3.27) 
2 

vy ,1(t) = !gt (6.3.28) 
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Equations of Motion for Ball: 

The initial position is given by (x0 )2 = 0 , ( y0 )2 = h2 . The components of the initial 
velocity are given by (vy ,0 )2 = v0 sin(!0 ) and (vx ,0 )2 = v0 cos(!0 ) , where v0 is the 

magnitude of the initial velocity and !0 is the initial angle with respect to the horizontal. 
So the equations for position and velocity of the ball simplify to 

x2 (t) = v0 cos(!0 )t (6.3.29) 
vx ,2 (t) = v0 cos(!0 ) (6.3.30) 

1 y2 (t) = h2 + v0 sin(!0 )t " gt2 (6.3.31) 
2 

vy ,2 (t) = v0 sin(!0 ) " gt (6.3.32) 

Note that the quantities h1 , h2 , and s2 should be treated as known quantities although no 
numerical values were given, only symbolic expressions. There are six independent 
equations with 9 as yet unspecified quantities y1(t) , t , y2 (t) , x2 (t) , vy ,1(t) , vy ,2 (t) , 

vx ,2 (t) , v0 ,!0 . 

So we need two more conditions, in order to find expressions for the initial angle, !0 , the 
time of collision, ta , and the spatial location of the collision point specified by y1(ta ) or 
y2 (ta ) in terms of the one unspecified parameter v0 . At the collision time t = ta , the 
collision occurs when the two balls are located at the same position. Therefore 

y1(ta ) = y2 (ta ) (6.3.33) 
x2 (ta ) = x1 = s2 (6.3.34) 

We shall now apply these conditions that must be satisfied in order for the ball to hit the 
pail. 

gt = h2 + v0 sin ( )t ! gt (6.3.35) h1 ! 
2
1 

a 
2 " 0 a 2

1 
a 

2 

s2 = v0 cos(!0 )ta (6.3.36) 

From the first equation, the term (1 / 2)gta 
2 cancels from both sides. Therefore we have 

that 
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h1 = h2 + v0 sin(!0 )ta 

s2 = v0 cos(!0 )ta . 

We can now solve these equations for tan(!0 ) = sin(!0 ) / cos(!0 ) , and thus the angle the 
person throws the ball in order to hit the pail. 

III. Carry our your plan – solve the problem! 

We rewrite these equations as 

v0 sin(!0 )ta = h1 " h2 (6.3.37) 
v0 cos(!0 )ta = s2 (6.3.38) 

Dividing these equations yields 

v0 sin(!0 )ta = tan(!0 ) = 
h1 " h2 (6.3.39) 

v0 cos(!0 )ta s2 

So the initial angle is independent of v0 , and is given by 

s2 ) (6.3.40) 

From the Figure 6.23 below we can see that tan(!0 ) = (h1 " h2 ) / s2 , implies that the 
second person aims the ball at the initial position of the pail. 

!0 = tan "1 ((h1 " h2 ) 

Figure 6.23: Geometry of collision 

In order to find the time that the ball collides with the pail, we begin by squaring both 
Eqs. (6.3.37) and (6.3.38) 
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We square both of the equations above and utilize the trigonometric identity 

sin2(!0 ) + cos2(!0 ) = 1 . 

So our squared equations become 

v0
2 sin2(!0 )ta 

2 = (h " h2 )
2 

(6.3.41) 1 

v0
2 cos2(!0 )ta 

2 = s2
2 (6.3.42) 

Adding these equations together yields 

v 2 (sin2(! ) + cos2(! ))t 2 = s 2 + (h " h )2 
(6.3.43) 0 0 0 a 2 1 2 

We now utilize the trigonometric identity 

sin2(!0 ) + cos2(!0 ) = 1 . 

So Eq. (6.3.43) becomes 

v 2t 2 = s 2 + (h ! h )2 
(6.3.44) 0 a 2 1 2 

which we can solve this for the time of collision 

t = 
"
$ 

s2
2 + (h1 ! h2 )

2 %
' 

1 2 

(6.3.45) a $ v0
2 ' # & 

We can now use the y-coordinate function of either the ball or the pail at t = ta to find the 
height that the ball collides with the pail. Since it had no initial y velocity, it’s easier to 
use the pail, 

g s2
2 + ( ! h2 )

2( h1 ) 
(6.3.46) y1(ta ) = h1 ! 22v0 

IV. Look Back – check your solution and method of solution 

The person aims at the pail at the point where the pail was released. Both undergo free 
fall so the key result was that the vertical position obeys 
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gt = h2 + v0 sin ( )t ! gt .h1 ! 
2
1 

a 
2 " 0 a 2

1 
a 

2 

The distance traveled due to gravitational acceleration are the same for both so all that
matters is the contribution form the initial positions and the vertical component of
velocity 

h1 = h2 + v0 sin !0 a .( )t 

Since the time is related to the horizontal distance by 

s2 = v0 cos !0 a( )t 

This is now as if both objects were moving at constant velocity. 
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