Torque and Simple Harmonic Motion

Recall: Fixed Axis Rotation Kinematics

Angle variable
θ
Angular velocity

$$
\omega \equiv d \theta / d t
$$

Angular acceleration

$$
\alpha \equiv d^{2} \theta / d t^{2}
$$

Mass element

$$
\Delta m_{i}
$$

Radius of orbit

Moment of inertia
Parallel Axis Theorem

$$
I_{S}=M d^{2}+I_{c m}
$$

Z-component of Angular Momentum

$$
L_{S, z}=I_{S} \omega
$$

Recall: Torque, Moment of Inertia and Angular Acceleration

z-component of total torque about S

$$
\tau_{s, z}^{\text {toal }}=\sum_{i=1}^{i=N} \Delta m_{i}\left(r_{\perp, i}\right)^{2} \alpha
$$

Recall: Moment of Inertia about S :

$$
I_{S}=\sum_{i=1}^{i=N} \Delta m_{i}\left(r_{\perp, i}\right)^{2}
$$

Summary:

$$
\tau_{S, z}^{\text {total }}=I_{S} \alpha
$$

Simple Pendulum

Pendulum: bob hanging from end of string

- Pivot point
- bob of negligible size
- massless string

Simple Pendulum

Simple Pendulum: bob of mass m hanging from end of massless string string pivoted at S .

Torque about S

$$
\vec{\tau}_{s}=\overrightarrow{\mathbf{r}}_{s, m} \times m \overrightarrow{\mathbf{g}}=l \hat{\mathbf{r}} \times m g(-\sin \theta \hat{\boldsymbol{\theta}}+\cos \hat{\mathbf{r}})=-l m g \sin \theta \hat{\mathbf{k}}
$$

Angular acceleration

$$
\overrightarrow{\boldsymbol{\alpha}}=\frac{d^{2} \theta}{d t^{2}} \hat{\mathbf{k}}
$$

Moment of inertial of a point mass about $\mathrm{S}, \quad I_{S}=m l^{2}$
Rotational Law of Motion

$$
\overrightarrow{\boldsymbol{\tau}}_{S}=I_{S} \overrightarrow{\boldsymbol{\alpha}}
$$

Simple harmonic oscillator equation

$$
-l m g \sin \theta=m l^{2} \frac{d^{2} \theta}{d t^{2}}
$$

Simple Pendulum: Small Angle Approximation

Angle of oscillation is small

$$
\sin \theta \cong \theta
$$

Simple harmonic oscillator

$$
\frac{d^{2} \theta}{d t^{2}} \cong-\frac{g}{l} \theta
$$

Analogy to spring equation

Angular frequency of oscillation

Period

$$
\frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x
$$

$$
\omega_{0} \cong \sqrt{\frac{g}{l}}
$$

$$
T_{0}=\frac{2 \pi}{\omega_{0}} \cong 2 \pi \sqrt{\frac{l}{g}}
$$

Period and Angular Frequency

Equation of Motion:

$$
-\frac{g}{l} \theta=\frac{d^{2} \theta}{d t^{2}}
$$

Solution: Oscillatory with Period T

$$
\theta(t)=A \cos \left(\frac{2 \pi}{T} t\right)+B \sin \left(\frac{2 \pi}{T} t\right)
$$

angular velocity:

$$
\frac{d \theta}{d t}(t)=-\frac{2 \pi}{T} A \sin \left(\frac{2 \pi}{T} t\right)+\frac{2 \pi}{T} B \cos \left(\frac{2 \pi}{T} t\right)
$$

angular acceleration:

$$
\frac{d^{2} \theta}{d t^{2}}(t)=-\left(\frac{2 \pi}{T}\right)^{2} A \cos \left(\frac{2 \pi}{T} t\right)-\left(\frac{2 \pi}{T}\right)^{2} B \sin \left(\frac{2 \pi}{T} t\right)=-\left(\frac{2 \pi}{T}\right)^{2} x
$$

Period:

$$
-\frac{g}{l} \theta=\frac{d^{2} \theta}{d t^{2}}=-\left(\frac{2 \pi}{T}\right)^{2} \theta \Rightarrow \frac{g}{l}=\left(\frac{2 \pi}{T}\right)^{2} \Rightarrow T=2 \pi \sqrt{\frac{l}{g}}
$$

Angular frequency

$$
\omega_{0} \equiv \frac{2 \pi}{T}=\sqrt{\frac{g}{l}}
$$

Simple Harmonic Motion: Initial Conditions

Equation of Motion:

$$
-\frac{g}{l} \theta=\frac{d^{2} \theta}{d t^{2}}
$$

Solution: Oscillatory with Period

$$
T=2 \pi \sqrt{\frac{l}{g}}
$$

Angle:

$$
\theta(t)=A \cos \left(\frac{2 \pi}{T} t\right)+B \sin \left(\frac{2 \pi}{T} t\right)
$$

Angular Velocity:

$$
\frac{d \theta}{d t}(t)=-\frac{2 \pi}{T} A \sin \left(\frac{2 \pi}{T} t\right)+\frac{2 \pi}{T} B \cos \left(\frac{2 \pi}{T} t\right)
$$

Initial Angle at $t=0$:

$$
\theta_{0} \equiv \theta(t=0)=A
$$

Initial Angular Velocity at $t=0:\left.\quad \frac{d \theta}{d t}\right|_{0} \equiv \frac{d \theta}{d t}(t=0)=\frac{2 \pi}{T} B$
General Solution:

$$
\theta(t)=\theta_{0} \cos \left(\frac{2 \pi}{T} t\right)+\left.\frac{T}{2 \pi} \frac{d \theta}{d t}\right|_{0} \sin \left(\frac{2 \pi}{T} t\right)
$$

Simple Pendulum: Mechanical Energy

- released from rest at an angle θ_{0}

Simple Pendulum: Mechanical Energy

- Velocity

$$
v_{\tan }=l \frac{d \theta}{d t}
$$

- Kinetic energy

$$
K_{f}=\frac{1}{2} m v_{\tan }^{2}=\frac{1}{2} m\left(l \frac{d \theta}{d t}\right)^{2}
$$

- Initial energy

$$
E_{0}=K_{0}+U_{0}=m g l\left(1-\cos \theta_{0}\right)
$$

- Final energy

$$
E_{f}=K_{f}+U_{f}=\frac{1}{2} m\left(l \frac{d \theta}{d t}\right)^{2}+m g l(1-\cos \theta)
$$

- Conservation of energy

$$
\frac{1}{2} m\left(l \frac{d \theta}{d t}\right)^{2}+m g l(1-\cos \theta)=m g l\left(1-\cos \theta_{0}\right)
$$

Simple Pendulum: Angular Velocity Equation of Motion

- Angular velocity

$$
\frac{d \theta}{d t}=\sqrt{\frac{2 g}{l}} \sqrt{\left(\cos \theta-\cos \theta_{0}\right)}
$$

- Integral form

$$
\int \frac{d \theta}{\sqrt{\left(\cos \theta-\cos \theta_{0}\right)}}=\int \sqrt{\frac{2 g}{l}} d t
$$

Simple Pendulum: First Order Correction

- period

$$
T=2 \pi \sqrt{\frac{l}{g}}\left(1+\frac{1}{4} \sin ^{2}\left(\theta_{0} / 2\right)+\cdots\right) \quad T_{0}=2 \pi \sqrt{\frac{l}{g}}
$$

- initial angle is small $\sin ^{2}\left(\theta_{0} / 2\right) \equiv \theta_{0}^{2} / 4$
- Approximation $T \cong 2 \pi \sqrt{\frac{l}{g}}\left(1+\frac{1}{16} \theta_{0}^{2}\right)=T_{0}\left(1+\frac{1}{16} \theta_{0}^{2}\right)$
- First order correction

$$
\Delta T_{1} \cong \frac{1}{16} \theta_{0}^{2} T_{0}
$$

Mini-Experiment: Simple Pendulums

Time 10 oscillations of a simple pendulum (bob on a string) for two different initial angles: i) 5^{0} and ii) 20°. Calculate periods and compare results. Can you explain any differences? Are they what you might expect?

Physical Pendulum

Pendulum pivoted about point S

Gravitational force acts center of mass

Center of mass distance from the piciot point

Physical Pendulum

torque about pivot point

$$
\overrightarrow{\boldsymbol{\tau}}_{s}=\overrightarrow{\mathbf{r}}_{s, c m} \times m \overrightarrow{\mathbf{g}}=l_{c m} \hat{\mathbf{r}} \times m g(-\sin \theta \hat{\boldsymbol{\theta}}+\cos \hat{\mathbf{r}})=-l_{c m} m g \sin \theta \hat{\mathbf{k}}
$$

moment of inertial about pivot point I_{s}

Example: uniform rod of mass m and length 1.

$$
I_{S}=\frac{1}{3} m l^{2}
$$

Physical Pendulum

Rotational dynamical equation

$$
\overrightarrow{\boldsymbol{\tau}}_{S}=I_{S} \overrightarrow{\boldsymbol{\alpha}}
$$

Small angle approximation

Equation of motion

$$
\frac{d^{2} \theta}{d t^{2}} \cong-\frac{l_{c m} m g}{I_{s}} \theta
$$

Angular frequency

Period

$$
\omega_{0} \cong \sqrt{\frac{l_{c m} m g}{I_{S}}}
$$

$$
T=\frac{2 \pi}{\omega_{0}} \cong 2 \pi \sqrt{\frac{I_{S}}{l_{c m} m g}}
$$

Concept Question: Physical Pendulum

A physical pendulum consists of a uniform rod of length I and mass m pivoted at one end. A disk of mass m 1 and radius a is fixed to the other end. Suppose the disk is now mounted to the rod by a frictionless bearing so that is perfectly free to spin. Does the period of the pendulum

1. increase?
2. stay the same?
3. decrease?

Checkpoint Problem: Physical Pendulum

A physical pendulum consists of a uniform rod of length I and mass m pivoted at one end. A disk of mass m_{1} and radius a is fixed to the other end.
a) Find the period of the pendulum.

Suppose the disk is now mounted to the rod by a frictionless bearing so that is perfectly free to spin.
b) Find the new period of the pendulum.

Checkpoint Problem: Torsional Oscillator

A disk with moment of inertia I_{0} rotates in a horizontal plane. It is suspended by a thin, massless rod. If the disk is rotated away from its equilibrium position by an angle θ, the rod exerts a restoring torque given by $\tau=-\gamma \theta$. At $\mathrm{t}=0$ the disk is released from rest at an angular displacement of θ_{0}. Find the subsequent time dependence of the angular displacement $\theta(t)$.

MIT OpenCourseWare
http://ocw.mit.edu

8.01SC Physics I: Classical Mechanics

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

