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Module 21: Two Dimensional Rotational Dynamics 
 

21.1 Torque 
 
In order to understand the dynamics of a rotating rigid body we must introduce a new 
quantity, the torque. Let a force PF

!
 with magnitude PF = F

!
 act at a point P . Let ,S Pr

!  

be the vector from the point S  to a point P , with magnitude ,S Pr = r! .  The angle 

between the vectors ,S Pr
!  and PF

!
 is !  with [0 ]! "# #  (Figure 21.1).  

 

 
 

Figure 21.1 Torque about a point S  due to a force acting at a point P  
 
The torque about a point S  due to force PF

!
 acting at P , is defined by   

 
 
 ,S S P P= !r F

!!!
" . (21.1.1) 

 
(See Module 3 for a review of the definition of the cross product of two vectors). The 
magnitude of the torque about a point S  due to force PF

!
 acting at P , is given by  

 
 sinS r F! "= . (21.1.2) 
 
The SI units for torque are [N m]! . The direction of the torque is perpendicular to the 
plane formed by the vectors ,S Pr

!  and PF
!

 (for [0 ]! "< < ), and by definition points in 
the direction of the unit normal vector to the plane ˆ RHRn  as shown in Figure 21.2. 

 

 
 

Figure 21.2 Vector direction for the torque 
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Recall that the magnitude of a cross product is the area of the parallelogram (the height 
times the base) defined by the two vectors. Figure 21.3 shows the two different ways of 
defining height and base for a parallelogram defined by the vectors ,S Pr

!  and PF
!

. 
 

 
Figure 21.3 Area of the torque parallelogram. 

 
 Let sinr r !" =  and let sinF F !" =  be the component of the force PF

!
 that is 

perpendicular to the line passing from the point S  to P . (Recall the angle !  has a range 
of values 0 ! "# #  so both 0r! "  and 0F! " .) Then the area of parallelogram defined 

by ,S Pr
!  and PF

!
 is given by 

 
 Area sinS r F r F r F! "# #= = = = . (21.1.3) 
 
We can interpret the quantity r!  as follows. We begin by drawing the line of action of the 
force PF

!
. This is a straight line passing through P , parallel to the direction of the force 

PF
!

. Draw a perpendicular to this line of action that passes through the point S (Figure 
21.4). The length of this perpendicular, sinr r !" = , is called the moment arm about the 
point S of the force PF

!
.  

 
 

Figure 21.4 The moment arm about the point S  associated with a force acting at the 
point P  is the perpendicular distance from S  to the line of action of the force passing 

through the point P  
 



12/28/2010 3 

 
You should keep in mind three important properties of torque: 

 
1. The torque is zero if the vectors ,S Pr

!  and PF
!

 are parallel ( 0)! =  or anti-parallel 
( )! "= . 

 
2. Torque is a vector whose direction and magnitude depend on the choice of a point 

S  about which the torque is calculated.  
 
3. The direction of torque is perpendicular to the plane formed by the two vectors, 

PF
!

 and ,S Pr = r!  (the vector from the point S  to a point P ).  
 
 
Alternative Approach to Assigning a Sign Convention for Torque 
 
In the case where all of the forces iF

!
 and position vectors ,i Pr

!  are coplanar (or zero), we 
can, instead of referring to the direction of torque, assign a purely algebraic positive or 
negative sign to torque according to the following convention. We note that the arc in 
Figure 21.5a circles in counterclockwise direction.  (Figures 21.5a and 21.5b use the 
simplifying assumption, for the purpose of the figure only, that the two vectors in 
question, PF

!
 and ,S Pr

!  are perpendicular.  The point S  about which torques are calculated 
is not shown.) We can associate with this counterclockwise orientation a unit normal 
vector   n̂  according to the right-hand rule: curl your right hand fingers in the 
counterclockwise direction and your right thumb will then point in the   n̂1  direction.  The 
arc in Figure 21.5b circles in the clockwise direction, and we associate this orientation 
with the unit normal   n̂2 . 
 
 It’s important to note that the terms “clockwise” and “counterclockwise” might be 
different for different observers.  For instance, if the plane containing PF

!
 and ,S Pr

!  is 
horizontal, an observer above the plane and an observer below the plane would disagree 
on the two terms.  For a vertical plane, the directions that two observers on opposite sides 
of the plane would be mirror images of each other, and so again the observers would 
disagree. 

        
 

Figure 21.5a Positive torque    Figure 21.5b Negative torque 
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1. Suppose we choose counterclockwise as positive. Then we assign a positive sign 
for the component of the torque when the torque is in the same direction as the 
unit normal   n̂1 , i.e. 

   
!
!S =

!rS ,P "
!
FP = +

!rS ,P

!
FP n̂1  (Figure 21.5a). 

 
2. Suppose we choose clockwise as positive. Then we assign a negative sign for the 

component of the torque in Figure 21.5b since the torque is directed opposite to 
the unit normal   n̂2 , i.e. 

   
!
!S =

!rS ,P "
!
FP = #

!rS ,P

!
FP n̂2 . 

 
21.1.1 Example: Consider two vectors P,F x̂=r i!   with 0x >  and ˆ ˆ

x zF F= +F i k
!

  with 

0xF >  and 0zF >  . Calculate the torque P,F !r F
!! . 

 
Answer. We calculate the cross product noting that in a right handed choice of unit 
vectors, ˆ ˆ! =i i 0

!
 and ˆ ˆˆ! = "i k j , 

 

 

!rP,F !
!
F = xî ! (Fx î + Fzk̂) = (xî ! Fx î) + (xî ! Fzk̂)

= "xFz ĵ
 

 
Since  0x >  and 0zF > , the direction of the cross product is in the y! -direction. 
 
21.1.2 Example In the figure, a force of magnitude F is applied to one end of a lever of 
length L. What is the magnitude and direction of the torque about the point S? 
 

 
 
Answer. Choose units vectors such that   î ! ĵ = k̂  , with î  pointing to the right and ĵ   
pointing up.  
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The torque about the point S  is given by 
    
!
!S =

!rS ,F "
!
F , where      

!rSF = Lcos! î + Lsin! ĵ  

and     
!
F = !Fĵ  then 

 

    
!
!S = (Lcos" î + Lsin" ĵ) # $F ĵ = $FLcos" k̂ . 

 
21.1.3 Example Torque and the Ankle 
 
A person of mass 75 kgm =  is crouching with their weight evenly distributed on both 
tiptoes.  The forces on the skeletal part of the foot are shown in the diagram.  
 

 
 
The normal force   

!
N  acts at the contact point between the foot and the ground. In this 

position, the tibia acts on the foot at the point  S  with a force F
!

 of an unknown 
magnitude F = F

!
 and makes an unknown angle !  with the vertical. This force acts on 

the ankle a horizontal distance 4.8 cms =  from the point where the foot contacts the 
floor.  The Achilles tendon also acts on the foot and is under considerable tension with 
magnitude T ! T

!
 and acts at an angle 037! =  with the horizontal as shown in the 

figure. The tendon acts on the ankle a horizontal distance 6.0 cmb =  from the point  S  
where the tibia acts on the foot. You may ignore the weight of the foot. Let -29.8 m sg = !  
be the gravitational constant. Compute the torque about the point  S  due to  
 

a) the normal force of the floor on the foot;  
b) the tendon force on the foot;  
c) the force of the tibia on the foot.  
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Solution: We shall first calculate the torque due to the force of the Achilles tendon on the 
ankle. The tendon force has the vector decomposition ˆ ˆcos sinT T! != +T i j

!
.  

 
 

 
 
The vector from the point S  to the point of action of the force is given by ,

ˆ
S T b= !r i!

. 

Therefore the torque due to the force of the tendon T
!

 on the ankle about the point S  is 
then 
 

, ,
ˆ ˆ ˆ ˆ( cos sin ) sinS T S T b T T bT! " " "= # = $ # + = $r T i i j k

!!!  
 
The torque diagram for the normal force is shown in the figure below; 
 

 
 
 
The vector from the point S  to the point where the normal force acts on the foot is given 
by ,

ˆ ˆ( )S N s h= !r i j!
. Since the weight is evenly distributed on the two feet, the normal 

force on one foot is equal to half the weight, or ( )1 2N mg= . The normal force is 

therefore given by ˆ ˆ(1/ 2)N mg= =N j j
!

. Therefore the torque of the normal force about 
the point S  is 
 

, ,
ˆ ˆ ˆ ˆ ˆ ˆ( ) (1/ 2)S N S N N s h N s N smg! = " = # " = =r j i j j k k!!  
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The force F
!

 that the tibia exerts on the ankle will make no contribution to the torque 
about this point S  since the tibia force acts at the point S  and therefore the vector 

,S F =r 0
!!

. 

 
21.2 Torque, Angular Acceleration, and Moment of Inertia 
 
For fixed-axis rotation, there is a direct relation between the component of the torque 
along the axis of rotation and angular acceleration. 
 
Consider the forces that act on the rotating body.  Most generally, the forces on different 
volume elements will be different, and so we will denote the force on the volume element 
of mass im!  by iF

!
. 

 
Choose the z -axis to lie along the axis of rotation. As in Section 20.1, divide the body 
into volume elements of mass im! . Let the point S  denote a specific point along the axis 
of rotation (Figure 21.6). Each volume element undergoes a tangential acceleration as the 
volume element moves in a circular orbit of radius , ,i ir! != r!  about the fixed axis.  
 

 
 

Figure 21.6: Volume element undergoing fixed-axis rotation about the z -axis. 
 
The vector from the point S  to the volume element is given by 
 
 

    
!rS , i = zi k̂ + !r

! ,i = zi k̂ + r
! , i r̂  (21.2.1) 

 
where iz  is the distance along the axis of rotation between the point S  and the volume 

element. The torque about S  due to the force iF
!

 acting on the volume element is 
given by 
 , ,S i S i i= !r F

!!!
" . (21.2.2) 

 
Substituting Equation (21.2.1) into Equation (21.2.2) gives 
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!
!S , i = (zi k̂ + r

" , i r̂) #
!
Fi . (21.2.3) 

 
For fixed-axis rotation, we are interested in the z -component of the torque, which must 
be the term 
 
 

    
(! S , i )z = (r

" , i r̂ #
!
Fi )z  (21.2.4) 

 
since the cross product ˆ

i iz !k F
!

 must be directed perpendicular to the plane formed by 

the vectors k̂  and iF
!

, hence perpendicular to the z -axis. 
 
The total force acting on the volume element has components 
 
 

    
!
Fi = Fradial, i r̂ + Ftan, i !̂ + Fz , i k̂ . (21.2.5) 

 
The z -component ,z iF  of the force cannot contribute a torque in the z -direction, and so 
substituting Equation (21.2.5) into Equation (21.2.4) yields 
 
 

   
(! S , i )z = (r

" , i r̂ # (Fradial, i r̂ + Ftan, i $̂))z . (21.2.6) 
 
The radial force does not contribute to the torque about the z -axis, since 
 
 , radial,ˆ ˆi ir F! " =r r 0

!
. (21.2.7) 

 
So, we are interested in the contribution due to torque about the z -axis due to the 
tangential component of the force on the volume element (Figure 21.7).  
 

 
 

Figure 21.7 Tangential force acting on a volume element. 
 
The component of the torque about the z -axis is given by 
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(! S , i )z = (r

" , i r̂ # Ftan, i $̂)z = r
" ,i Ftan, i . (21.2.8) 

 
The z -component of the torque is directed out of the page in Figure 21.7, where tan,iF  is 
positive (the tangential force is directed counterclockwise, as in the figure). 
 
Applying Newton’s Second Law in the tangential direction, 
 
 tan, tan,i i iF m a= ! . (21.2.9) 
 
Using our kinematics result that the tangential acceleration is   

atan, i = r
! , i" , we have that  

 
   

Ftan, i = !mi r
" , i# . (21.2.10) 

 
From Equation (21.2.8), the component of the torque about the z -axis is then given by 
 
 

  
(! S , i )z = r

" , i Ftan, i = #mi (r" , i )
2$ . (21.2.11) 

 
The total component of the torque about the z -axis is the summation of the torques on all 
the volume elements, 
 

 

  

(! S
total )z = (! S ,1)z + (! S , 2 )z + " " " = (! S , i )z

i=1

i=N

# = r
$ , i Ftan, i

i=1

i=N

#

= %mi (r$ , i )
2&

i=1

i=N

# .
 (21.2.12) 

 
Since each element has the same angular acceleration, ! , the summation becomes 
 

 
  
(! S

total )z = "mi (r# , i )
2

i=1

i=N

$
%

&'
(

)*
+ . (21.2.13) 

 
Recalling our definition of the moment of inertia, (add link) the z -component of the 
torque is proportional to the angular acceleration, 
 
   (! S

total )z = IS " , (21.2.14) 
 
and the moment of inertia, SI , is the constant of proportionality.  
 
This is very similar to Newton’s Second Law: the total force is proportional to the 
acceleration, 
 
 total totalm=F a

! ! . (21.2.15) 
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where the total mass, totalm ,  is the constant of proportionality. 
 
21.2.1 Example: Turntable 
 
The turntable in Example 14.1.1, of mass 1.2 kg  and radius 11.3 10 cm! , has a moment 
of inertia 2 21.01 10 kg mSI

!= " #  about an axis through the center of the disc and 
perpendicular to the disc. The turntable is spinning at an initial constant frequency of 

1
0 33 cycles minf != " . The motor is turned off and the turntable slows to a stop in 8.0 s  

due to frictional torque. Assume that the angular acceleration is constant. What is the 
magnitude of the frictional torque acting on the disc?  
 
Answer:  
 
We have already calculated the angular acceleration of the disc in Example 14.1.1, where 
we found that the angular acceleration is 
 

 
1

0 1 2

0

3.5 rad s 4.3 10 rad s
8.0 s

f

ft t t
! !!

"
#

# ##$ # %
= = = = # & %
$ #

 (21.2.16) 

 
and so the magnitude of the frictional torque is 
 

 
  

! friction
total = IS " = (1.01#10$2 kg %m2 )(4.3#10$1 rad % s$2 )

= 4.3#10$3 N %m.
 (21.2.17) 

 
21.2.2 Example:  A pulley of mass pm , radius  R , and moment of inertia about its center 
of mass cmI , is attached to the edge of a table. An inextensible string of negligible mass 
is wrapped around the pulley and attached on one end to block 1 that hangs over the edge 
of the table.  The other end of the string is attached to block 2 which slides along a table. 
The coefficient of sliding friction between the table and the block 2 is kµ . Block 1 has 
mass   m1  and block 2 has mass 2m , with 1 2km mµ> . At time   t = 0 , the blocks are 
released from rest and the string does not slip around the pulley. At time 1t t= , block 1 
hits the ground. Let g  denote the gravitational constant.  
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a) Find the magnitude of the acceleration of each block. Express your answer in 
terms of pm , cmI ,  R ,   m1 , 2m , kµ , and 1t  as needed.  
 

b) How far did the block 1 fall before hitting the ground?  
 

Solution:  The torque diagram for the pulley is shown in the figure below 
 

 
 
where we choose k̂ pointing into the page. Note that the tensions in the string on either 
side of the pulley are not equal. The reason is that the pulley is massive. To understand 
why, remember that the difference in the magnitudes of the torques due to the tension on 
either side of the pulley is equal to the moment of inertia times the magnitude of the 
angular acceleration which is non-zero for a massive pulley. So the tensions cannot be 
equal. 
 
The torque principle states that for fixed axis rotation, the torque about that axis satisfies 
 
  ! z = Iz" z . (21.2.18) 
 
From our torque diagram, the torque about the point O  at the center of the pulley is given 
by 
 
 

    
!
!O =

!rO ,1 "
!
T1 +
!rO ,2 "

!
T2 = R(T1 # T2 )k̂ . (21.2.19) 

 
Therefore the torque equation becomes 
 
   R(T1 ! T2 ) = Iz" z . (21.2.20) 
 
The free body force diagrams on the two blocks are shown in the figure below. 
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Newton’s Second Law on block 1 yields 
 
   

m1g ! T1 = m1ay1 . (21.2.21) 
 
Newton’s Second Law on block 2 in the ĵ  direction yields 
 
   N ! m2g = 0 . (21.2.22) 
 
Newton’s Second Law on block 2 in the î  direction yields 
 
   T2 ! fk = m2ax2 . (21.2.23) 
 
The kinetic friction force is given by 
 
   fk = µk N = µk m2g  (21.2.24) 
 
Therefore Eq. (21.2.23) becomes 
 
   T2 ! µk m2g = m2ax2 . (21.2.25) 
 
Constraints: Block 1 and block 2 have the same acceleration so 
 
   a ! ax1 = ax2 . (21.2.26) 
 
We can solve Eqs. (21.2.21) and (21.2.25) for the two tensions yielding 
 
   T1 = m1g ! m1a , (21.2.27) 
 
   T2 = µk m2g + m2a . (21.2.28) 
 
At point on the rim of the pulley has a tangential acceleration that is equal to the 
acceleration of the blocks so 
 
  a = R! z . (21.2.29) 
 
The torque equation (Eq. (21.2.20)) then becomes 
 

 
  
T1 ! T2 =

Iz

R2 a . (21.2.30) 

 
Substituting Eqs. (21.2.27) and (21.2.28) into Eq. (21.2.30) yields 
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m1g ! m1a ! (µk m2g + m2a) =

Iz

R2 a  (21.2.31) 

 
which we can now solve for the accelerations of the blocks 
 

 
  
a =

m1g ! µk m2g
m1 + m2 + Iz / R2

. (21.2.32) 

 
Block 1 hits the ground at time 1t , therefore it traveled a distance 
 

 
  
y1 =

1
2

m1g ! µk m2g
m1 + m2 + Iz / R2

"

#
$

%

&
' t1

2 . (21.2.33) 

 
Torque acts at the Center of Gravity 
 
Suppose a rigid body in static equilibrium consists of N  particles labeled by the index 
1, 2, 3, ...,i N= .  Choose a coordinate system with a choice of origin O  such that mass 

im  has position ir
! . Each point particle experiences a gravitational force gravity,i im=F g

! ! . 
The total torque about the origin is then zero, 
 

 , total , gravity,
1 1 1

i N i N i N

O O i i i i i
i i i

m
= = =

= = =

= ! = ! =" " "r F r g 0
!!! ! !! !

# # = . (21.2.34) 

 
If in Equation (21.2.34) the gravitational acceleration g!  is assumed constant we can 
rearrange the summation by pulling the constant vector g!  out of the summation (g!  
appears in each term in the summation); 
 

 , total
1 1

i N i N

O i i i i
i i

m m
= =

= =

! "
= # = # =$ %

& '
( (r g r g 0

!! ! ! !!
) . (21.2.35) 

 
We now use our definition of the center of the center of mass, Equation (9.2.17) of the 
text, to rewrite Equation (21.2.35) as  
 

 , total T cm cm T
1

i N

O i i
i

m M M
=

=

= ! = ! = ! ="r g R g R g 0
!! !! ! ! !!

# . (21.2.36) 

 
Thus the torque due to the gravitational force acting on each point-like particle is 
equivalent to the torque due to the gravitational force acting on a point-like particle of 
mass TM  located at a point in the body called the center of gravity, which is equal to the 
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center of mass of the body in the typical case in which the gravitational acceleration g!  is 
constant throughout the body.  
 
21.2.3 Example 
 
A steel washer is mounted on a cylindrical rotor of radius 12.7 mmr = . A massless 
string, with an object of mass 0.055 kgm =  attached to the other end, is wrapped around 
the side of the rotor and passes over a massless pulley.  
 

 
Assume that there is a constant frictional torque about the axis of the rotor. The object is 
released and falls. As the mass falls, the rotor undergoes an angular acceleration of 
magnitude 1! . After the string detaches from the rotor, the rotor coasts to a stop with an 

angular acceleration of magnitude 2! . Let 29.8 m sg != "  denote the gravitational 
constant. Based on the data in the figure below, what is the moment of inertia RI  of the 
rotor assembly (including the washer) about the rotation axis?  
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Solution: We begin by drawing free body diagrams for the rotor and hanger show in the 
figures below. (The choice of positive directions are indicated on the figures.) The 
frictional torque on the rotor is then given by 

    
!
! f = "! f k̂  where we use f!  as the 

magnitude of the frictional torque. The torque about the center of the rotor due to the 
tension in the string is given by     

!
!T = rT k̂  where  r  is the radius of the rotor. The angular 

acceleration of the rotor is given by    
!
!
1
= !1 k̂  and we expect that  !1 > 0  because the 

rotor is speeding up.  
 
 

   
 
 
While the hanger is falling, the rotor/washer combination has a net torque due to the 
tension in the string and the friction torque, and using the rotational equation of motion, 
 
 1f RTr I! "# =  (21.2.37) 
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We apply Newton’s Second Law to the hanger and find that  
 
 1 1mg T ma m r!" = =  (21.2.38) 
 
where   a1 = r!1  has been used to express the linear acceleration of the falling hanger to 
the angular acceleration of the rotor;  that is, the string does not stretch. 
 
Before proceeding, it might be illustrative to multiply Equation (21.2.38) by  and add to 
Equation (21.2.37) to obtain 
 
   

mgr ! " f = (IR + mr 2 )#1  (21.2.39) 
 
Equation (21.2.39) contains the unknown frictional torque, and this torque is determined 
by considering the slowing of the rotor/washer after the string has detached.   
 

 
 
The torque on the system is just this frictional torque, and so 
 
   

!" f = IR#2  (21.2.40) 
 
Note that in Equation (21.2.40),   

! f > 0  and  !2 < 0 , consistent with Eq. (21.2.40). 
 
Subtracting Equation (21.2.40) from Equation (21.2.39) eliminates f! ,  
 
   mgr = mr 2!1 + IR (!1 "!2 )  (21.2.41) 
 
 
and solving for RI  yields 
 

 
  
IR =

mr g ! r"1( )
"1 !"2

 (21.2.42) 

 

r
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For a numerical result, the values for  !1  and 2!  from the above figure are 

 !1 = (96rad " s#1) / (1.15s) = 83 rad " s#2  and !2 = "(89 rad # s"1) / (2.85s) = " 31rad # s"2 .  
Inserting these expressions into Eq. (21.2.42) yields 
 
 5 25.3 10 kg mRI

!= " # . (21.2.43) 
 
21.3 Torque and Rotational Work 
 
When a constant torque S!  is applied to an object, and the object rotates through an angle 
!"  about an axis through the center of mass, then the torque does an amount of work 

SW ! "# = #  on the object. By extension of the linear work-energy theorem, the amount 
of work done is equal to the change in the rotational kinetic energy of the object,  
 

 2 2
rot cm cm 0 rot, rot,0

1 1
2 2f fW I I K K! != " = " . (21.3.1) 

 
The rate of doing this work is the rotational power exerted by the torque,  
 

 rot rot
rot 0

lim S St

dW W dP
dt t dt

!
" " #

$ %

$
& = = =

$
. (21.3.2) 

 
Rotational Work 
 
Consider a rigid body rotating about an axis. Each small element of mass im!  in the rigid 
body is moving in a circle of radius   

(rS , i )!  about the axis of rotation passing through the 
point S . Each mass element undergoes a small angular displacement !"  under the 
action of a tangential force, tan, tan,

ˆ
i iF=F

!
! , where !̂  is the unit vector pointing in the 

tangential direction (Figure 21.7). The element will then have an associated displacement 
vector for this motion, 

    
!
!rS , i = (rS , i )" !# #̂  and the work done by the tangential force is 

 
 

    
!Wi =

!
Ftan ,i " !

!rS , i = (Ftan, i #̂) " ((rS , i )$ !# #̂) = Ftan, i (rS , i )$ !# . (21.3.3) 
 
Applying Newton’s Second Law to the element im!  in the tangential direction, 
 
   

Ftan, i = !mi atan, i . (21.3.4) 
 
Using the expression in for tangential acceleration    

atan, i = (rS , i )!" , we have that  
 
   

Ftan, i = !mi (rS , i )"# . (21.3.5) 
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Thus the rotational work done on the mass element is  
 
 

  
!Wi = !mi (rS , i )"

2# !$ . (21.3.6) 
 
Summing the rotational work done on all of the mass elements, we obtain 
 

 
  
!W = !Wi

i
" = !mi (rS , i )#

2

i
"
$

%&
'

()
* !+ . (21.3.7) 

 
In the limit that the discrete mass elements become infinitesimal continuous mass 
elements, im dm! " , the summation becomes an integral over the body: 
 

 
  
!W = !mi (rS , i )"

2

i
#
$

%&
'

()
* !+ , dm(rS )

"
2

body
-

$

%
&

'

(
) * !+ . (21.3.8) 

 
Since the integral in this expression is just the moment of inertia about a fixed axis 
passing through the point S , we have for the rotational work 
 
 SW I ! "# = # . (21.3.9) 
 
Since the z -component of the torque (in the direction along the axis of rotation) about S  
is given by 
 
   (! S )z = IS " , (21.3.10) 
 
the rotational work is the product of the torque and the angular displacement, 
 
   !W = (" S )z!# . (21.3.11) 
 
Recall the result of Equation (21.2.8) that the component of the torque (in the direction 
along the axis of rotation) about S  due to the tangential force, tan,iF

!
, acting on the mass 

element im!  is 
 
   

(! S ,i )z = Ftan, i (rS , i )" , (21.3.12) 
 
and the total torque is the sum 
 
 

  
(! S )z = (! S ,i )z

i
" = Ftan, i (rS , i )#

i
"  (21.3.13) 

 
and so the work done is  
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!W = !Wi

i
" = Ftan, i (rS , i )# !$

i
" = (% S )z!$ . (21.3.14) 

 
In the limit of small angles, d! !" # , W dW! "  and the differential rotational work is 
 
   dW = (! S )z d" . (21.3.15) 
 
We can integrate this amount of rotational work as the angle coordinate of the rigid body 
changes from some initial value 0! !=  to some final value f! != , 
 

 
  
W = dW! = (" S )z d#

#0

# f

! . (21.3.16) 

 
 
Rotational Work-Kinetic Energy Theorem 
 
We will now show that the rotational work is equal to the change in rotational kinetic 
energy. We begin by substituting our result from Equation (21.3.10) into Equation 
(21.3.15) for the infinitesimal rotational work, 
 
 rot SdW I d! "= . (21.3.17) 
 
Recall that the rate of change of angular velocity is equal to the angular acceleration, 

d dt! "#  and that the angular velocity is d dt! "# . Note that in the limit of small 
displacements,  
 

 d dd d d
dt dt
! "

" ! !!= = . (21.3.18) 

 
Therefore the infinitesimal rotational work is 
 

 rot S S S S
d ddW I d I d I d I d
dt dt
! "

# " " ! !!= = = = . (21.3.19) 

 
We can integrate this amount of rotational work as the angular velocity of the rigid body 
changes from some initial value 0! !=  to some final value f! != , 
 

 
0

2 2
rot rot 0

1 1
2 2

f

S S f SW dW I d I I
!

!
! ! ! != = = "# # . (21.3.20) 

 
When a rigid body is rotating about a fixed axis passing through a point S  in the body, 
there is both rotation and translation about the center of mass unless S  is the center of 
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mass. If we choose the point S  in the above equation for the rotational work to be the 
center of mass, then  
 

 2 2
rot cm cm, cm cm,0 rot , rot ,0 rot

1 1
2 2f fW I I K K K! != " = " # $ . (21.3.21) 

 
 
Rotational Power 
 
The rotational power is defined as the rate of doing rotational work, 
 

 rot
rot

dWP
dt

! . (21.3.22) 

 
We can use our result for the infinitesimal work to find that the rotational power is the 
product of the applied torque with the angular velocity of the rigid body, 
 

 
  
Prot !

dWrot

dt
= (" S )z

d#
dt

= (" S )z$ . (21.3.23) 

 
21.3.1 Example Work Done by Frictional Torque  
 
A steel washer is mounted on the shaft of a small motor. The moment of inertia of the 
motor and washer is   I0 . The washer is set into motion. When it reaches an initial 
angular velocity  !0 , at   t = 0 , the power to the motor is shut off, and the washer slows 
down during a time interval    !t1 = ta  until it reaches an angular velocity of  ! a  at time  ta . 
At that instant, a second steel washer with a moment of inertia  Iw  is dropped on top of 
the first washer. Assume that the second washer is only in contact with the first washer.  
The collision takes place over a time   !tint = tb " ta  after which the two washers and rotor 

rotate with angular speed   !b . Assume the frictional torque on the axle (magnitude  
! f )  

is independent of speed, and remains the same when the second washer is dropped. 
 

a) What angle does the rotor rotate through during the collision? 
 
b) What is the work done by the friction torque from the bearings during the 

collision? 
 

c) Write down an equation for conservation of energy. Can you solve this equation 
for  !b? 

 
c) What is the average rate that work is being done by the friction torque during the 

collision? 
 



12/28/2010 21 

Solution: 
 
We begin by solving for the frictional torque during the first stage of motion when the 
rotor is slowing down. We choose a coordinate system shown in the figure below.  
 

 
 
The component of average angular acceleration is given by 
 

!1 =
"a #"0

ta
< 0  

 
and using the rotational equation of motion, the frictional torque satisfies 
 

!" f = I0
#a !#0

$t1

%

&'
(

)*
. 

 
During the collision, the component of the average angular acceleration of the rotor is 
given by 
 

!2 =
"b #"a

($tint )
< 0 . 

 
The angle the rotor rotates through during the collision is (analogous to linear motion 
with constant acceleration) 
 

!"2 =#a!tint +
1
2
$2!tint

2 =#a!tint +
1
2

#b %#a

!tint

&

'(
)

*+
!tint

2 =
1
2
(#b +#a )!tint > 0 . 

 
The non-conservative work done by the bearing friction during the collision is 
 

Wf ,b = !" f#$rotor = !" f
1
2
(%a +%b )#tint . 
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Using our result for the frictional torque, the work done by the bearing friction during the 
collision is 
 

Wf ,b =
1
2
I0

!a "!0

#t1

$

%&
'

()
(!a +!b )#tint < 0 . 

 
The negative work is consistent with the fact that the kinetic energy of the rotor is 
decreasing as the rotor is slowing down. Using the work energy theorem during the 
collision the kinetic energy of the rotor has deceased by  
 

Wf ,b =
1
2
(I0 + Iw )!b

2 "
1
2
I0!a

2 . 

 
Using our result for the work we have that 
 

1
2
I0

!a "!0

#t1

$

%&
'

()
(!a +!b )#tint =

1
2
(I0 + Iw )!b

2 "
1
2
I0!a

2 . 

 
This is a quadratic equation for the angular speed !b  of the rotor and washer 
immediately after the collision that we can in principle solve. However remember that we 
assumed that the frictional torque is independent of the speed of the rotor. Hence the best 
practice would be to measure !0 , !a , !b , !t1 , !tint , I0 , and Iw  and then determine 
how closely our model agrees with conservation of energy.  
 
The rate of work done by the frictional torque is given by 
 

Pf =
Wf ,b

!tint
=
1
2
I0

"a #"0

!t1

$

%&
'

()
("a +"b ) < 0 .
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