Two-Dimensional Rotational Dynamics

Recall: Fixed Axis Rotation Kinematics

Angle variable
θ
Angular velocity

$$
\omega \equiv d \theta / d t
$$

Angular acceleration

$$
\alpha \equiv d^{2} \theta / d t^{2}
$$

Mass element

$$
\Delta m_{i}
$$

Radius of orbit

Moment of inertia
Parallel Axis Theorem

$$
I_{S}=\sum_{i=1}^{i=N} \Delta m_{i}\left(r_{\perp, i}\right)^{2} \rightarrow \int_{\text {body }} d m\left(r_{\perp}\right)^{2}
$$

$$
I_{S}=M d^{2}+I_{c m}
$$

Z-component of Angular Momentum

$$
L_{S, z}=I_{S} \omega
$$

Main Idea: Fixed Axis Rotation of Rigid Body

Torque produces angular acceleration about center of mass

$$
\tau_{\mathrm{cm}}^{\text {total }}=I_{\mathrm{cm}} \alpha_{\mathrm{cm}}
$$

I_{cm} is the moment of inertial about the center of mass
α_{cm} is the angular acceleration about center of mass

Torque as a Vector

Force $\quad \overrightarrow{\mathbf{F}}_{P} \quad$ exerted at a point P on a rigid body.
Vector $\quad \overrightarrow{\mathbf{r}}_{S, P} \quad$ from a point S to the point P.

Torque about point S due to the force exerted at point P :

$$
\overrightarrow{\boldsymbol{\tau}}_{S}=\overrightarrow{\mathbf{r}}_{S, P} \times \overrightarrow{\mathbf{F}}_{P}
$$

Summary: Cross Product

Magnitude: equal to the area of the parallelogram defined by the two vectors

$$
|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}|=|\overrightarrow{\mathbf{A}}||\overrightarrow{\mathbf{B}}| \sin \theta=|\overrightarrow{\mathbf{A}}|(|\overrightarrow{\mathbf{B}}| \sin \theta)=(|\overrightarrow{\mathbf{A}}| \sin \theta)|\overrightarrow{\mathbf{B}}| \quad(0 \leq \theta \leq \pi)
$$

Direction: determined by the Right-Hand-Rule

Properties of Cross Products

$$
\begin{aligned}
\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}} & =-\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{A}} \\
c(\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}) & =\overrightarrow{\mathbf{A}} \times c \overrightarrow{\mathbf{B}}=c \overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}} \\
(\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}) \times \overrightarrow{\mathbf{C}} & =\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{C}}+\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}}
\end{aligned}
$$

Cross Product of Unit Vectors

Unit vectors in Cartesian coordinates

$$
\begin{aligned}
& |\hat{\mathbf{i}} \times \hat{\mathbf{j}}|=|\hat{\mathbf{i}}||\hat{\mathbf{j}}| \sin (\pi / 2)=1 \\
& |\hat{\mathbf{i}} \times \hat{\mathbf{i}}|=|\hat{\mathbf{i}} \||\hat{\mathbf{j}}| \sin (0)=0 \\
& \hat{\mathbf{i} \times \hat{\mathbf{j}}=\hat{\mathbf{k}}} \quad \hat{\mathbf{i}} \times \hat{\mathbf{i}}=\overrightarrow{\mathbf{0}} \\
& \hat{\mathbf{j}} \times \hat{\mathbf{k}}=\hat{\mathbf{i}} \\
& \hat{\mathbf{j}} \times \hat{\mathbf{j}} \times \overrightarrow{\mathbf{j}}=\overrightarrow{\mathbf{0}}=\hat{\mathbf{j}} \\
& \hat{\mathbf{k}} \times \hat{\mathbf{k}}=\overrightarrow{\mathbf{0}}
\end{aligned}
$$

Components of Cross Product

$$
\overrightarrow{\mathbf{A}}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{B}}=B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}+B_{z} \hat{\mathbf{k}}
$$

$\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{\mathbf{i}}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{\mathbf{j}}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{\mathbf{k}}$

$$
=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

Checkpoint Problem: Torque

Consider two vectors $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}$ with $x>0$ and $\overrightarrow{\mathbf{F}}=F_{x} \hat{\mathbf{i}}+F_{z} \hat{\mathbf{k}}$ with $F_{x}>0$ and $F_{z}>0$. What is the direction of the cross product $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}$?

Recall: Rotational Kinematics

- Individual element of mass Δm_{i}
- Radius of orbit

$$
r_{\perp, i}
$$

- Tangential velocity $v_{\tan , i}=r_{\perp, i} \omega$

- Tangential acceleration $a_{\mathrm{tan}, i}=r_{\perp, i} \alpha$
- Radial Acceleration

$$
a_{\mathrm{rad}, i}=\frac{v_{\mathrm{tan}, i}^{2}}{r_{\perp, i}}=r_{\perp, i} \omega^{2}
$$

Dynamics: Newton's Second Law and Torque about S

Tangential force on mass element produces torque

Newton's Second Law

$$
\begin{gathered}
\overrightarrow{\mathbf{F}}_{\mathrm{tan}, i}=F_{\mathrm{tan}, i} \hat{\boldsymbol{\theta}}=\Delta m_{i} a_{\mathrm{tan}, i} \hat{\boldsymbol{\theta}} \\
F_{\mathrm{tan}, i}=\Delta m_{i} r_{\perp, i} \alpha
\end{gathered}
$$

Torque about S

$$
\overrightarrow{\boldsymbol{\tau}}_{s, i}=\overrightarrow{\mathbf{r}}_{\perp, i} \times \overrightarrow{\mathbf{F}}_{\mathrm{tan}, i}
$$

z-component of torque about S

$$
\left(\tau_{z, S}\right)_{i}=r_{\perp, i} F_{\text {tan }, i}=\Delta m_{i}\left(r_{\perp, i}\right)^{2} \alpha
$$

Moment of Inertia and Torque

Component of the total torque about an axis passing through S is the sum over all elements
$\tau_{z, S}^{\text {total }}=\left(\tau_{z, S}\right)_{1}+\left(\tau_{z, S}\right)_{2}+\cdots=\sum_{i=1}^{i=N}\left(\tau_{z, S}\right)_{i}=\sum_{i=1}^{i=N} \Delta m_{i}\left(r_{\perp, i}\right)^{2} \alpha$

Recall: Moment of Inertia about and axis passing through S :

$$
I_{S}=\sum_{i=1}^{i=N} \Delta m_{i}\left(r_{\perp, i}\right)^{2}
$$

Summary:

$$
\tau_{z, S}^{\text {total }}=I_{S} \alpha
$$

Torque due to Uniform Gravitational Force

The total torque on a rigid body due to the gravitational force can be determined by placing all the gravitational force at the center-of-mass of the object.

$$
\begin{aligned}
\overrightarrow{\boldsymbol{\tau}}_{\mathrm{S}, \mathrm{grav}} & =\sum_{i=1}^{N} \overrightarrow{\mathbf{r}}_{S, i} \times \overrightarrow{\mathbf{F}}_{\mathrm{grav}, i}=\sum_{i=1}^{N} \overrightarrow{\mathbf{r}}_{S, i} \times m_{i} \overrightarrow{\mathbf{g}}=\sum_{i=1}^{N} m_{i} \overrightarrow{\mathbf{r}}_{S, i} \times \overrightarrow{\mathbf{g}} \\
& =\left(\frac{1}{m^{\text {totat }}} \sum_{i=1}^{N} m_{i} \overrightarrow{\mathbf{r}}_{S, i}\right) \times m^{\mathrm{totat}} \overrightarrow{\mathbf{g}} \\
& =\overrightarrow{\mathbf{R}}_{\mathrm{S}, \mathrm{~cm}} \times m^{\mathrm{totat}} \overrightarrow{\mathbf{g}}
\end{aligned}
$$

Problem Solving Strategy: Two Dimensional Rotation

Step 1: Draw free body force diagrams for each object and indicate the point of application of each force

Step 2: Select point to compute torque about (generally select center of mass)

Step 3: Choose coordinate system. Indicate positive direction for increasing rotational angle.

Step 4: Apply Newton's Second Law and Torque Law to obtain equations
Step 5: Look for constraint condition between rotational acceleration and any linear accelerations.

Step 6: Design algebraic strategy to find quantities of interest

Rotor Moment of Inertia

Worked Example: Moment of Inertia Wheel

A steel washer is mounted on a cylindrical rotor of radius r. A massless string, with an object of mass m attached to the other end, is wrapped around the side of the rotor and passes over a massless pulley. Assume that there is a constant frictional torque about the axis of the rotor. The object is released and falls. As the mass falls, the rotor undergoes an angular acceleration of magnitude α_{1}. After the string detaches from the rotor, the rotor coasts to a stop with an angular acceleration of magnitude α_{2}. Let g denote the gravitational constant.

What is the moment of inertia of the rotor assembly (including the washer) about the rotation axis?

Worked Example Solution: moment of inertia of rotor

Force and rotational equations while weight is descending:

$$
\begin{aligned}
& m g-T=m a_{1} \\
& r T-\tau_{f}=I_{R} \alpha_{1}
\end{aligned}
$$

Constraint:

$$
a_{1}=r \alpha_{1}
$$

Rotational equation while slowing down $\quad-\tau_{f}=I_{R} \alpha_{2}$

Speeding up Slowing down

Solve for moment of inertia: $\quad r m\left(g-r \alpha_{1}\right)+I_{R} \alpha_{2}=I_{R} \alpha_{1}$

$$
I_{R}=\frac{r m\left(g-r \alpha_{1}\right)}{\left(\alpha_{1}-\alpha_{2}\right)}
$$

Checkpoint Problem: Atwood's Machine

A pulley of mass m_{p}, radius R, and moment of inertia I_{cm} about the center of mass, is suspended from a ceiling. An inextensible string of negligible mass is wrapped around the pulley and attached on one end to an object of mass m_{1} and on the other end to an object of mass m_{2}, with $m_{1}>m_{2}$. At time $t=0$, the objects are released from rest. Find the magnitude of the acceleration of the objects.

Checkpoint Problem: Falling Stick

A uniform stick of mass m and length / is suspended horizontally with end A at the edge of a table and the other end B is held by hand. End A is suddenly released. At the instant after release:
a) What is the torque about the end B on the table?
b) What is the angular acceleration about the end B on the table?
c) What is the vertical acceleration of the center of mass?
d) What is the vertical component of the hinge force at B ?
e) Does the hinge force have a horizontal component at the instant after release?

Rotational Work

Tangential force

$$
\overrightarrow{\mathbf{F}}_{\text {tan }, i}=F_{\text {tana },} \hat{\boldsymbol{\theta}}
$$

Displacement vector

$$
\Delta \overrightarrow{\mathbf{r}}_{S, i}=r_{\perp, i} \Delta \theta \hat{\boldsymbol{\theta}}
$$

work for a small displacement

$$
\Delta W_{i}=\overrightarrow{\mathbf{F}}_{\text {tan }, i} \cdot \Delta \overrightarrow{\mathbf{r}}_{S, i}=F_{\text {tan }, i} \hat{\boldsymbol{\theta}} \cdot r_{\perp, i} \Delta \theta \hat{\boldsymbol{\theta}}=r_{\perp, i} F_{\text {tan, }, i} \Delta \theta
$$

Rotational Work

Newton's Second Law

$$
F_{\mathrm{tan}, i}=\Delta m_{i} a_{\mathrm{tan}, i}
$$

Tangential acceleration

$$
a_{\mathrm{tan}, i}=r_{\perp, i} \alpha
$$

Work for small displacement $\quad \Delta W_{i}=\Delta m_{i} r_{\perp, i}{ }^{2} \alpha \Delta \theta$

Summation becomes integration for continuous body

$$
\Delta W=\left(\sum_{i} \Delta m_{i} r_{\perp, i}{ }^{2}\right) \alpha \Delta \theta=\left(\int_{\text {body }} d m\left(r_{S, \perp}\right)^{2}\right) \alpha \Delta \theta=I_{S} \alpha \Delta \theta
$$

Rotational Work

Rotational work for a small displacement $\quad \Delta W=I_{S} \alpha \Delta \theta$

Torque about S

$$
\tau_{S}=I_{S} \alpha
$$

Infinitesimal rotational work

$$
\begin{array}{r}
\Delta W=\tau_{S} \Delta \theta \\
W=\int_{\theta=\theta_{0}}^{\theta=\theta_{f}} d W=\int_{\theta=\theta_{0}}^{\theta=\theta_{f}} \tau_{S} d \theta
\end{array}
$$

Integrate total work

Rotational Work-Kinetic Energy Theorem

Infinitesimal rotational work

$$
d W_{\mathrm{rot}}=I_{S} \alpha d \theta=I_{S} \frac{d \omega}{d t} d \theta=I_{S} d \omega \frac{d \theta}{d t}=I_{S} d \omega \omega
$$

Integrate rotational work

$$
W_{\mathrm{rot}}=\int_{\omega=\omega_{0}}^{\omega=\omega_{f}} d W_{\mathrm{rot}}=\int_{\omega=\omega_{0}}^{\omega=\omega_{f}} I_{S} d \omega \omega=\frac{1}{2} I_{S} \omega_{f}^{2}-\frac{1}{2} I_{S} \omega_{0}^{2}
$$

Kinetic energy of rotation about S

$$
W_{\mathrm{rot}}=\frac{1}{2} I_{S} \omega_{f}^{2}-\frac{1}{2} I_{S} \omega_{0}^{2}=K_{\mathrm{rot}, f}-K_{\mathrm{rot}, 0} \equiv \Delta K_{\mathrm{rot}}
$$

Rotational Power

Rotational power is the time rate of doing rotational work

$$
P_{\mathrm{rot}} \equiv \frac{d W_{\mathrm{rot}}}{d t}
$$

Product of the applied torque with the angular velocity

$$
P_{\mathrm{rot}} \equiv \frac{d W_{\mathrm{rot}}}{d t}=\tau_{s} \frac{d \theta}{d t}=\tau_{s} \omega
$$

Checkpoint Problem: Rotational Work

A steel washer is mounted on the shaft of a small motor. The moment of inertia of the motor and washer is I_{0}. The washer is set into motion. When it reaches an initial angular speed ω_{0}, at $t=0$, the power to the motor is shut off, and the washer slows down during an interval Δt_{1} down until it reaches an angular speed of ω_{a} at time t_{a}. At that instant, a second steel washer with a moment of inertia I_{w} is dropped on top of the first washer. Assume that the second washer is only in contact with the first washer. The collision takes place over a time $\Delta \mathrm{t}_{\text {int }}$ after which the two washers and rotor rotate with the angular speed ω_{b}. Assume the frictional torque τ_{f} on the axle is independent of speed, and remains the same when the second washer is dropped.
a) What angle does the rotor rotate through during the collision?
b) What is the work done by the friction torque τ_{f} from the bearings during the collision?

MIT OpenCourseWare
http://ocw.mit.edu

8.01SC Physics I: Classical Mechanics

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

