
12/28/2010 1 

Module 20: Two Dimensional Rotational Kinematics 
 

20.1 Introduction 
 
The physical objects that we encounter in the world consist of collections of atoms that 
are bound together to form systems of particles.  When forces are applied, the shape of 
the body may be stretched or compressed like a spring, or sheared like jello. In some 
systems the constituent particles are very loosely bound to each other as in fluids and 
gasses, and the distances between the constituent particles will vary. We shall begin our 
study of extended objects by restricting ourselves to an ideal category of objects, rigid 
bodies, which do not stretch, compress, or shear. 
 
 A body is called a rigid body if the distance between any two points in the body 
does not change in time. Rigid bodies, unlike point masses, can have forces applied at 
different points in the body.  For most objects, treating as a rigid body is an idealization, 
but a very good one. In addition to forces applied at points, forces may be distributed 
over the entire body. Distributed forces are difficult to analyze; however, for example, we 
regularly experience the effect of the gravitational force on bodies. Based on our 
experience observing the effect of the gravitational force on rigid bodies, we note that the 
gravitational force can be concentrated at a point in the rigid body called the center of 
gravity, which for small bodies (so that g!  may be taken as constant within the body) is 
identical to the center of mass of the body (we shall prove this fact in Appendix 20.A). 
 
 Let’s consider a rigid rod thrown in the air (Figure 20.1) so that the rod is 
spinning as its center of mass moves with velocity cmv

! .  Rigid bodies, unlike point-like 
objects, can have forces applied at different points in the body. We have explored the 
physics of translational motion; now, we wish to investigate the properties of rotation 
exhibited in the rod’s motion, beginning with the notion that every particle is rotating 
about the center of mass with the same angular (rotational) velocity. 

 

 
 

Figure 20.1 The center of mass of a thrown rigid rod follows a parabolic trajectory while 
the rod rotates about the center of mass. 
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 We can use Newton’s Second Law to predict how the center of mass will move. 
Since the only external force on the rod is the gravitational force (neglecting the action of 
air resistance), the center of mass of the body will move in a parabolic trajectory. 
 
 How was the rod induced to rotate? In order to spin the rod, we applied a torque 
with our fingers and wrist to one end of the rod as the rod was released. The applied 
torque is proportional to the angular acceleration. The constant of proportionality is 
called the moment of inertia. When external forces and torques are present, the motion of 
a rigid body can be extremely complicated while it is translating and rotating in space. 
We shall begin our study of rotating objects by considering the simplest example of rigid 
body motion, rotation about a fixed axis. 
 
20.2 Fixed Axis Rotation: Rotational Kinematics  
 
Fixed Axis Rotation 
 
When we studied static equilibrium, we demonstrated the need for two conditions: The 
total force acting on an object is zero, as is the total torque acting on the object. If the 
total torque is non-zero, then the object will start to rotate. 
 
 A simple example of rotation about a fixed axis is the motion of a compact disc in 
a CD player, which is driven by a motor inside the player. In a simplified model of this 
motion, the motor produces angular acceleration, causing the disc to spin. As the disc is 
set in motion, resistive forces oppose the motion until  the disc no longer has any angular 
acceleration, and the disc now spins at a constant angular velocity. Throughout this 
process, the CD rotates about an axis passing through the center of the disc, and is 
perpendicular to the plane of the disc (see Figure 20.2).  This type of motion is called 
fixed-axis rotation.  
 

 
 

Figure 20.2 Rotation of a compact disc about a fixed axis. 
 
 When we ride a bicycle forward, the wheels rotate about an axis passing through 
the center of each wheel and perpendicular to the plane of the wheel (Figure 20.3). As 
long as the bicycle does not turn, this axis keeps pointing in the same direction. This 
motion is more complicated than our spinning CD because the wheel is both moving 
(translating) with some center of mass velocity, cmv

! , and rotating. 
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Figure 20.3 Fixed axis rotation and center of mass translation for a bicycle wheel. 
 
 When we turn the bicycle’s handlebars, we change the bike’s trajectory and the 
axis of rotation of each wheel changes direction. Other examples of non-fixed axis 
rotation are the motion of a spinning top, or a gyroscope, or even the change in the 
direction of the earth’s rotation axis. This type of motion is much harder to analyze, so 
we will restrict ourselves in this chapter to considering fixed axis rotation, with or 
without translation. 
 
Angular Velocity and Angular Acceleration 
 
When we considered the rotational motion of a point-like object, we introduced an angle 
coordinate ! , and then defined the angular velocity as  
 

 d
dt
!

" # , (20.2.1) 

  
 and angular acceleration as 
 

 
2

2

d
dt
!

" # . (20.2.2) 

 
 For a rigid body undergoing fixed-axis rotation, we can divide the body up into 
small volume elements with mass im! . Each of these volume elements is moving in a 
circle of radius ,ir!  about the axis of rotation (Figure 20.4).  
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Figure 20.4 Coordinate system for fixed-axis rotation. 
 
We will adopt the notation implied in Figure 20.4, and denote the vector from the axis to 
the point where the mass element is located as ,i!r

! , with , ,i ir! != r! . 
 
Because the body is rigid, all the volume elements will have the same angular velocity !  
and hence the same angular acceleration ! .  If the bodies did not have the same angular 
velocity, the volume elements would “catch up to” or “pass” each other, precluded by the 
rigid-body assumption. 
 
The angular velocity is in fact a vector quantity.  Define the angular velocity vector to be 
directed along the z -axis with z -component equal to the time derivative of an angle ! ,  
 

 
    

!
! =

d"
dt

k̂ =! k̂ . (20.2.3) 

 
Figure 20.4a: Angular velocity vector for a volume element for fixed axis rotation 
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For a rigid body rotating with angular velocity  
!
! , the velocity    

!v i  of any point in the 
rigid body located at position    

!ri  is given by (Figure 20.4a) 
 
    

!v i =
!
! "
!ri  (20.2.4) 

 
In a similar fashion, all points in the rigid body have the same angular acceleration, 

2 2/d dt! "= . Define the angular acceleration vector to also be directed along the z  axis, 
 

 
    

!
! =

d 2"

dt2 k̂ = ! k̂ . (20.2.5) 

 
Sign Convention: Angular Velocity and Angular Acceleration 

 
For rotational problems we shall always choose a right handed cylindrical coordinate 
system. If the positive z-axis points up, then we choose !  to be increasing in the 
counterclockwise direction as shown in Figure 20.5a. 

 
Figure 20.5a Coordinate system for fixed axis rotation. 

 
If the rigid body rotates in the counterclockwise direction, then the z-component of the 
angular velocity is positive, 0d dt! "# > . The angular velocity vector then points in the 

  +k̂ -direction as shown in Figure 20.5b. 

 
Figure 20.5b Angular velocity vector for 0d dt! "# >  



12/28/2010 6 

 
If the rigid body rotates in the clockwise direction, then the z-component of the angular 
velocity angular velocity is negative, 0d dt! "# < . The angular velocity vector then 
points in the   !k̂ -direction as shown in Figure 20.5c. 

 
Figure 20.5c Angular velocity vector for 0d dt! "# <  

 
If the rigid body increases its rate of rotation in the counterclockwise (positive) direction 
then the z-component of the angular acceleration is positive, 2 2 / 0d dt d dt! " #$ = > . 
The angular acceleration vector then points in the   +k̂ -direction as shown in Figure 
20.5d. 

 
Figure 20.5d Angular acceleration vector for 2 2 / 0d dt d dt! " #$ = >  

 
If the rigid body decreases its rate of rotation in the counterclockwise (positive) direction 
then the  z-component of the angular acceleration is negative, 2 2 / 0d dt d dt! " #$ = < . 
The angular acceleration vector then points in the   !k̂ -direction as shown in Figure 20.5e.  
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Figure 20.5e Angular acceleration vector for 2 2 / 0d dt d dt! " #$ = <  

 
To phrase this more generally, if !  and !  have the same sign, the body is speeding up; 
if opposite signs, the body is slowing down.  This general result is independent of the 
choice of positive direction of rotation. 
 
Note that in Figure 20.2, the CD has the angular velocity vector points downward (in the 
  !k̂ -direction); CDs do not operate the same way record player turntables do. 
 
Tangential Velocity and Tangential Acceleration 
 
Since the small volume im!  element of mass is moving in a circle of radius , ,i ir! != r!  
with angular velocity ! , the element has a tangential velocity component  
 
 tan, ,i iv r !"= . (20.2.6) 
 
If the magnitude of the tangential velocity is changing, the volume element undergoes a 
tangential acceleration given by  
 
 tan, ,i ia r !"= . (20.2.7) 
 
Recall from Chapter 6.3 Equation (6.3.14) that the volume element is always accelerating 
inward with magnitude  
 

 
2
tan, 2

rad, ,
,

i
i i

i

v
a r

r
!"

"

= = . (20.2.8) 
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20.2.1 Example: Turntable, Part I 
 
A turntable is a uniform disc of mass 1.2 kg  and a radius 11.3 10 cm! . The turntable is 
spinning initially in a counterclockwise direction when seen from above at a constant rate 
of 1

0 33 cycles minf != "  (33 rpm ). The motor is turned off and the turntable slows to a 
stop in 8.0 s . Assume that the angular acceleration is constant. 
 

a) What is the initial angular velocity of the turntable?  
 

b) What is the angular acceleration of the turntable? 
 
Answer:  
 
Choose a coordinate system shown in Figure 20.5f.  
 

 
Figure 20.5f Angular velocity of turntable that is slowing down. 

 
Initially, the disc is spinning with a frequency 
 

 1
0

cycles 1min33 0.55 cycles s 0.55 Hz
min 60 s

f !" #" #= = $ =% &% &
' (' (

, (20.2.9) 

 
so the initial angular velocity has magnitude 
 

 1
0 0

radian cycles2 2 0.55 3.5 rad s
cycle s

f! " " #$ %$ %= = = &' (' (
) *) *

. (20.2.10) 

 
The angular velocity vector points in the   +k̂ -direction as shown in Figure 20.5b. The 
final angular velocity is zero, so the magnitude of the angular acceleration is 
 

 
1

0 1 2

0

3.5 rad s 4.3 10 rad s
8.0 s

f

ft t t
! !!

"
#

# ##$ # %
= = = = # & %
$ #

. (20.2.11) 

 
The z-component of the angular acceleration is negative, the disc is slowing down and so 
the angular acceleration vector then points in the   !k̂ -direction as shown in Figure 20.5g.  
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Figure 20.5g Angular acceleration of turntable that is slowing down. 

 
 
20.3 Rotational Kinetic Energy 
 
The general motion of a rigid body consists of a translation of the center of mass with 
velocity cmv

!  and a rotation about the center of mass with angular velocity   
!
!cm . 

 
Having defined translational kinetic energy in Chapter 7.2, Equation 7.2.1 (add correct 
reference), we now define the rotational kinetic energy for a rigid body about its center 
of mass.  
 
Choose the z -axis to lie along the axis of rotation. As in Section 20.2, divide the body 
into volume elements of mass im! . Let the point S  denote a specific point along the axis 
of rotation (Figure 20.6). Each volume element undergoes a tangential acceleration as the 
volume element moves in a circular orbit of radius , ,i ir! != r!  about the fixed axis.  
 

 
 

Figure 20.6: Volume element undergoing fixed-axis rotation about the z -axis. 
 
Each individual mass element im!  undergoes circular motion about the center of mass 
with z-component of angular velocity cm!  in a circle of radius   

(rcm, i )! . Therefore the 
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velocity of each element is given by 
    
!vcm, i = (rcm, i )!"cm #̂ . The rotational kinetic energy is 

then 
 

 
  
Kcm, i =

1
2
!mi vcm, i

2 =
1
2
!mi (rcm, i )"

2#cm
2 . (20.3.1) 

 
We now add up the kinetic energy for all the mass elements, 
 

 

  

Kcm = lim
i!"
#mi !0

Kcm, i
i=1

i=N

$ = lim
i!"
#mi !0

1
2
#mi (rcm, i )%

2

i
$
&

'(
)

*+
,cm

2

i=1

i=N

$

=
1
2

dm(rcm )
%
2

body
-

&

'
(

)

*
+,cm

2

 (20.3.2) 

 
Definition: Moment of Inertia about a Fixed Axis 
 
 

The quantity 
 
 

  
Icm = dm(rcm )

!
2

body
" . (20.3.3) 

 
is called the moment of inertia of the rigid body about a fixed axis passing 
through the center of mass, and is a physical property of the body. The SI units for 
moment of inertia are 2kg m! "#$ % . 

 
Thus 
 

 
  
Kcm =

1
2

dm(rcm )
!
2

body
"

#

$
%

&

'
()cm

2 *
1
2

Icm)cm
2  (20.3.4) 

 
 
20.3.1 Example: Moment of Inertia of a Rod of Uniform Mass Density 
 
Consider a thin uniform rod of length L  and mass m . In this problem, we will calculate 
the moment of inertia about an axis perpendicular to the rod that passes through the 
center of mass of the rod. A sketch of the rod, volume element, and axis is shown in 
Figure 20.8. 
 
Choose Cartesian coordinates, with the origin at the center of mass of the rod, which is 
midway between the endpoints since the rod is uniform. Choose the x -axis to lie along 
the length of the rod, with the positive x -direction to the right, as in the figure. 
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Figure 20.8 Moment of inertia of a uniform rod about center of mass. 
  
Identify an infinitesimal mass element dm dx!= , located at a displacement x  from the 
center of the rod, where the mass per unit length /m L! =  is a constant, as we have 
assumed the rod to be uniform. 
 
When the rod rotates about an axis perpendicular to the rod that passes through the center 
of mass of the rod, the element traces out a circle of radius r x! = . 
 
We add together the contributions from each infinitesimal element as we go from 

2x L= !  to 2x L= . The integral is then 
 

 

  

Icm = (rcm )
!
2 dm

body
" = # (x2 )

$L / 2

L / 2

" dx = #
x3

3
$L / 2

L / 2

=
m
L

(L / 2)3

3
$

m
L

($L / 2)3

3
=

1
12

m L2.

 (20.3.5) 

 
By using a constant mass per unit length along the rod, we need not consider variations in 
the mass density in any direction other than the x - axis. We also assume that the width is 
the rod is negligible. (Technically we should treat the rod as a cylinder or a rectangle in 
the -x y  plane if the axis is along the z - axis. The calculation of the moment of inertia in 
these cases would be more complicated.) 
 
Example 20.3.2: Moment of Inertia: Uniform Disc 
 
A thin uniform disc of mass  M  and radius  R  is mounted on an axle passing through the 
center of the disc, perpendicular to the plane of the disc. Calculate the moment of inertia 
about an axis that passes perpendicular to the disc through the center of mass of the disc  
 
Solution: 
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As a starting point, consider the contribution to the moment of inertia from the mass 
element  dm  show in the figure above. Take the point  S  to be the center of mass of the 
disc. Choose cylindrical coordinates with the coordinates   (r,!)  in the plane and the  z -
axis perpendicular to the plane. The area element 
 
  da = r dr d!  (20.3.6) 
 
can be thought of as the product of arc length  r d!  and the radial width  dr . Since the 
disc is uniform, the mass per unit area is a constant,  
 

 
  
! =

dm
da

=
mtotal

Area
=

M
"R2

. (20.3.7) 

 
Therefore the mass in the infinitesimal area element as given in Equation (20.3.6), a 
distance  r  from the axis of rotation, is given by  
 

 
  
dm = ! r dr d" = M

#R2 r dr d" . (20.3.8) 

 
When the disc rotates, the mass element traces out a circle of radius   (rcm )

!
2 = r 2 ;  that is, 

the distance from the center is the perpendicular distance from the axis. 
 
The moment of inertia integral is now an integral in two dimensions; the angle !  varies 
from  ! = 0  to  ! = 2" , and the radial coordinate  r  varies from   r = 0  to  r = R . Thus the 
limits of the integral are  
 

 
  
Icm = (rcm )

!
2 dm

body
" =

M
#R2

r3 d$
$ =0

$ =2#

"r=0

r=R

" dr . (20.3.9) 

 
The integral can now be explicitly calculated by first integrating the ! -coordinate 
 

 
  
Icm =

M
!R2 d"

" =0

" =2!

#$%
&
' r3dr

r=0

r=R

# =
M
!R2 2!r3dr

r=0

r=R

# =
2M
R2 r3dr

r=0

r=R

#  (20.3.10) 

 
and then integrating the  r -coordinate, 
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Icm =

2M
R2 r3dr

r=0

r=R

! =
2M
R2

r 4

4
r=0

r=R

=
2M
R2

R4

4
=

1
2

MR2 . (20.3.11) 

 
Remark: Instead of taking the area element as a small patch  da = r dr d! , choose a ring 
of radius  r  and width  dr . Then the area of this ring is given by  
 
 

  
daring = ! (r + dr)2 " !r 2 = !r 2 + 2!r dr + ! (dr)2 " !r 2 = 2!r dr + ! (dr)2 .(20.3.12) 

 
In the limit that   dr ! 0 , the term proportional to   (dr)2  can be ignored and the area is 
  da = 2!rdr .  This equivalent to first integrating the  d!  variable 
 

 
  
daring = r dr d!

! =0

! =2"

#$%
&
' = 2"r dr . (20.3.13) 

 
Then the mass element is 
 

 
  
dmring = !daring =

M
"R2 2"r dr . (20.3.14) 

 
The moment of inertia integral is just an integral in the variable r , 
 

 
  
Icm = (r

!
)2 dm

body
" =

2#M
#R2

r3dr
r=0

r=R

" =
1
2

MR2 . (20.3.15) 

 
 
20.4 Parallel Axis Theorem 
 
Consider a rigid body of mass m  undergoing fixed-axis rotation. Consider two parallel 
axes. The first axis passes through the center of mass of the body, and the moment of 
inertia about this first axis is cmI . The second axis passes through some other point S  in 
the body. Let ,cmSd  denote the perpendicular distance between the two parallel axes 
(Figure 20.9). Then the moment of inertia SI  about an axis passing through a point S  is 
related to cmI  by 
 2

cm ,cmS SI I m d= + . (20.4.1) 
 



12/28/2010 14 

 
 

Figure 20.9 Geometry of the parallel axis theorem. 
 
Proof of the Parallel Axis Theorem 
 
Identify an infinitesimal volume element of mass dm . The vector from the point S  to the 
mass element is ,S dmr! , the vector from the center of mass to the mass element is cm,dmr! , 
and the vector from the point S  to the center of mass is ,cmSr

! .  From Figure 20.9, we 
see that 
 
 , ,cm cm,S dm S dm= +r r r! ! ! . (20.4.2) 
 
 
The notation gets complicated at this point.  We are interested in distances from the 
respective axes, so denote the following vectors as motivated in Section 14.2. 
As in Figure 20.9 and Equation (20.4.2), cm, dmr!  is the vector from the center of mass to 
the position of the mass element of mass dm .  This vector has a component vector 
cm, ,dmr !

"  parallel to the axis through the center of mass and a component vector cm, ,dm!r!  
perpendicular to the axis through the center of mass.  The magnitude of the perpendicular 
component vector is 
 

 cm, , cm, ,dm dmr! !=r! . (20.4.3) 
 
As in Figure 20.9 and Equation (20.4.2), ,S dmr!  is the vector from the point S  to the 
position of the mass element of mass dm .  This vector has a component vector , ,S dmr !

"  
parallel to the axis through the point S  and a component vector , ,S dm!r

!  perpendicular to 
the axis through the point S .  The magnitude of the perpendicular component vector is 
 

 , , , ,S dm S dmr! !=r! . (20.4.4) 
 

As in Figure 20.9 and Equation (20.4.2), ,cmSr
!  is the vector from the point S  to the center 

of mass.  This vector has a component vector , ,cmSr !

"  parallel to both axes and a 
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perpendicular component vector of ,cmSr
!  perpendicular to both axes (the axes are parallel, 

of course) is , ,cmS !r
! .  The magnitude of the perpendicular component vector is 

 
 , ,cm ,cmS Sd! =r! . (20.4.5) 
 
Equation (20.4.2) is now expressed as two equations, 
 

 , , , ,cm cm, ,

, , , ,cm cm, , .
S dm S dm

S dm S dm

! ! != +

= +

r r r
r r r! ! !

" " "

" " "  (20.4.6) 

 
At this point, note that if we had simply decided that the two parallel axes are parallel to 
the z -direction, we could have saved some steps and perhaps spared some of the notation 
with the triple subscripts.  However, we want a more general result, one valid for cases 
where the axes are not fixed, or when different objects in the same problem have different 
axes.  For example, consider the turning bicycle, for which the two wheel axes will not be 
parallel, or a spinning top that precesses (wobbles).  Such cases will be considered in 
Chapter 15, and we will show the general case of the parallel axis theorem in anticipation 
of use for more general situations. 
 
The moment of inertia about the point S  is  
 
 

  
IS = dm(rS ,! ,dm )2

body
" . (20.4.7) 

 
From (20.4.6) we have 
 

 

    

(rS ,! ,dm )2 =
!rS ,! ,dm "

!rS ,! ,dm

= (!rS ,! ,cm +
!rcm,! ,dm ) " (!rS ,! ,cm +

!rcm,! ,dm )

= dS , cm
2 + (rcm,! , dm )2 + 2 !rS ,! ,cm "

!rcm,! ,dm.

 (20.4.8) 

 
Thus we have for the moment of inertia about S , 
 
 

    
IS = dm dS , cm

2

body
! + dm(rcm," ,dm )2

body
! + 2 dm(!rS ," , cm #

!rcm," ,dm )
body
! . (20.4.9) 

 
In the first integral in Equation (20.4.9), , ,cm ,cmS Sr d! =  is the distance between the parallel 
axes and is a constant and may be taken out of the integral, and 
 
 

  
dm

body
! dS , cm

2 = m dS , cm
2 . (20.4.10) 
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The second term in Equation (20.4.9) is the moment of inertia about the axis through the 
center of mass,  
 
 

  
Icm = dm (rcm,! ,dm )2

body
" . (20.4.11) 

 
The third integral in Equation (20.4.9) is zero. To see this, note that the term , ,cmS !r

!  is a 
constant and may be taken out of the integral, 
 
 

    
2 dm (

!rS ,! , cm "
!rcm,! ,dm )

body
# =

!rS ,! , cm "2 dm !rcm,! ,dm
body
#  (20.4.12) 

 
The integral 

    
dm !rcm,! ,dm

body
"  is the perpendicular component of the position of the center 

of mass with respect to the center of mass, and hence 0
!

, with the result that 
 
 

    
2 dm (!rS ,! , cm "

!rcm,! ,dm )
body
# = 0 . (20.4.13) 

 
Thus, the moment of inertia about S  is just the sum of the first two integrals in 
Equation (20.4.9), 
 
 

  
IS = Icm + mdS , cm

2 . (20.4.14) 
 
20.4.1 Example: Uniform Rod 
 
Let point S  be the left end of the rod of Example 14.2.1 and Figure 20.8. Then the 
distance from the center of mass to the end of the rod is ,cm / 2Sd L= . The moment of 
inertia endSI I=  about an axis passing through the endpoint is related to the moment of 
inertia about an axis passing through the center of mass, 2

cm (1/12)I mL= , according to 
Equation (20.4.14), 
 

 2 2 21 1 1
12 4 3SI mL mL mL= + = . (20.4.15) 

 
In this case it’s easy and useful to check by direct calculation.  Use Equation (20.3.5) but 
with the limits changed to 0x! =  and x L! = , where   !x = x + L / 2 ; 
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2 2
end 0

body

3 3 3
2

0

( ) (0) 1
.

3 3 3 3

L

L

I r dm x dx

x m L m
mL

L L

!

!

" # #= =

#
= = $ =

% %
 (20.4.16) 

 
20.5 Conservation of Energy Closed Systems 
 
Consider a closed system (  

!Esystem = 0 ) such that the work done by all the non-
conservative internal forces is zero. Then the change in the mechanical energy of the 
system is zero 
 
   

!Emechanical = !U + !K = (U f + K f ) " (U0 + K0 ) = 0  (20.5.1) 
 
For fixed axis rotation with a component of angular velocity !  about the fixed axis, the 
change in kinetic energy is given by 
 

 
  
!K " K f # K0 =

1
2

IS$ f
2 #

1
2

IS$0
2  (20.5.2) 

 
where  S is  a point that lies on the fixed axis. Then conservation of energy implies that 
 

 
  
U f +

1
2

IS! f
2 =U0 +

1
2

IS!0
2  (20.5.3) 

 
Example 20.5.1. 
 
A physical pendulum consists of a uniform rod of mass   m1  pivoted at one end about the 
point  S . The rod has length   l1  and moment of inertia   I1  about the pivot point. A disc of 
mass   m2  and radius   r2  with moment of inertia   Icm  about its center of mass is rigidly 

attached a distance   l2  from the pivot point.  The pendulum is initially displaced to an 
angle  !0  and then released from rest. 
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a) What is the moment of inertia of the physical pendulum about the pivot point  S ?  
 
b) How far from the pivot point is the center of mass of the system? 

 
c) What is the angular speed of the pendulum when the pendulum is at the bottom of 

its swing? 
 
 
Solution: 
 
a) The moment of inertia about the pivot point will be the sum of the moment of inertia of 
the rod, given as   I1 , and the moment of inertia of the disc about the pivot point.  The 
moment of inertia of the disc about the pivot point is found from the parallel axis 
theorem, 
 
   Idisc = Icm + m2 l2

2  (20.5.4) 
 
The total moment of inertia about the pivot point  S  is then 
 
   IS = I1 + Idisc = I1 + Icm + m2 l2

2 . (20.5.5) 
 
The center of mass of the compound system is located a distance from the pivot point 
 

 
  
lcm =

m1(l1 / 2) + m2 l2

m1 + m2

. (20.5.6) 

 
b) We can use conservation of mechanical energy, to find the angular speed of the 
pendulum at the bottom of its swing. 
 
Take the zero point of gravitational potential energy to be the point where the bottom of 
the rod is at its lowest point, that is,  ! = 0 .  The initial mechanical energy is then 
 

 
  
E0 =U0 = m1 g (l1 !

l1
2

cos"0 ) + m2 g (l1 ! l2 cos"0 ) , (20.5.7) 
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The final mechanical energy is 
 

 
  
E f =U f + K f = m1 g

l1
2
+ m2g(l1 ! l2 ) +

1
2

IS" f
2 , (20.5.8) 

 
with  IS  as found in Equation (20.5.5).  There are no nonconservative forces acting, so the 
mechanical energy is constant therefore equating the expressions in (20.5.7) and (20.5.8) 
we get that 
 

 
  
m1 g (l1 !

l1
2

cos"0 ) + m2 g (l1 ! l2 cos"0 ) = m1 g
l1
2
+ m2g(l1 ! l2 ) +

1
2

IS# f
2 , (20.5.9) 

 
This simplifies to 
 

 
  

m1 l1
2

+ m2 l2

!

"#
$

%&
g (1' cos(0 ) =

1
2

IS) f
2 , (20.5.10) 

 
We now solve for  

! f  (taking the positive square root to insure that we are calculating 
angular speed)  
 

 
  
! f =

2
m1 l1

2
+ m2 l2

"

#$
%

&'
g (1( cos)0 )

IS

, (20.5.11) 

 
Finally we substitute in Eq.(20.5.5) in to Eq. (20.5.11) and find 
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! f =

2
m1 l1

2
+ m2 l2

"

#$
%

&'
g (1( cos)0 )

I1 + Icm + m2 l2
2

. (20.5.12) 

 
 
Note that we can rewrite Eq. (20.5.10), using Eq. (20.5.6) for the distance between the 
center of mass and the pivot point, to get 
 

 
  
(m1 + m2 )lcmg (1! cos"0 ) =

1
2

IS# f
2 , (20.5.13) 

 
We can interpret this equation as follows. Treat the compound system as a point particle 
of mass   m1 + m2  located at the center of mass  lcm . Take the zero point of gravitational 
potential energy to be the point where the center of mass is at its lowest point, that is, 
 ! = 0 . Then  
 
   E0 = (m1 + m2 )lcmg (1! cos"0 ) , (20.5.14) 
and  
 

 
  
E f =

1
2

IS! f
2 , (20.5.15) 

 
Thus conservation of energy reproduces Eq. (20.5.13). 



12/28/2010 21 

MIT OpenCourseWare 
http://ocw.mit.edu 
 
 
 
8.01SC Physics I: Classical Mechanics 
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.  
 
 


