Rotational Kinematics

Concept Questions

Question 1 The figure shows a graph of ω_{z} and α_{z} versus time for a particular rotating body.

During which time intervals is the rotation slowing down?

1. $0<\mathrm{t}<2 \mathrm{~s}$
2. $2 \mathrm{~s}<\mathrm{t}<4 \mathrm{~s}$
3. $4 \mathrm{~s}<\mathrm{t}<6 \mathrm{~s}$
4. None of the intervals.
5. Two of the intervals.
6. Three of the intervals.

Question 2

Object A sits at the outer edge (rim) of a merry-go-round, and object B sits halfway between the rim and the axis of rotation. The merry-go-round makes a complete revolution once every thirty seconds. The magnitude of the angular velocity of Object B is

1. half the angular speed of Object A .
2. the same as the angular speed of Object A.
3. twice the angular speed of Object A.
4. impossible to determine

Question 3 Which has the smallest I about its center?

1. Ring (mass m, radius R)
2. Disc (mass m, radius R)
3. Sphere (mass m, radius R)
4. All have the same I.

Question 4 Which gives the largest I for the disc?
1)

2)

3)

4) All have the same I.

Question 5 Rotational Kinetic Energy A disk with mass m and radius R is spinning with angular speed ω about an axis that passes through the rim of the disk perpendicular to its plane. The moment of inertia about cm is $I_{c m}=(1 / 2) m R^{2}$. Its total kinetic energy is:

1. $(1 / 4) m R^{2} \omega^{2}$
2. $(1 / 2) m R^{2} \omega^{2}$
3. $(3 / 4) m R^{2} \omega^{2}$
4. $(1 / 4) m R \omega^{2}$
5. $(1 / 2) m R \omega^{2}$
6. $(1 / 4) m R \omega$

MIT OpenCourseWare
http://ocw.mit.edu

8.01SC Physics I: Classical Mechanics

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

