MITOCW | MIT8_01SCF10mod20_10_300k

I now want to discuss the perpendicular axis theorem. The perpendicular axis theorem allows you to calculate a moment of inertia, but it only applies to thin sheets.

I place the thin sheen into plane xy. Here is my thin sheet-- you've seen it before in separate segments-- with width a, length b, uniform mass distribution, and mass m . I can choose any axis x and y in the plane through the sheet-- they are perpendicular to each other. What the perpendicular axis theorem tells me is that the moment of inertia about the z axis, which is perpendicular to the paper, is the moment of inertia about the x-axis-- which I can choose in this plane-- plus the moment of inertia about the y-axis, which I can choose also in this plane, but x and y are perpendicular to each other.

You can choose x and y in crazy ways, but I will not do that: I will choose the y-axis right through the center. I will also choose the x -axis right through the center c , right through the center of this sheet. I will call this x, I will call this one y, and z is the one that is perpendicular to the paper. I'm going to rotate it about an axis perpendicular to the paper-- I call this axis 1, and I call this axis 2.

I of 1-- you can either look up in a table, or you derive it as we did in a different segment. I of 1 equals $1 / 12$ times ma squared, and I of 2 about this rotational axis, equals $1 / 12 \mathrm{mb}$ squared. What this perpendicular axis theorem is was telling you that this is a thin sheet that the moment of inertia-rotation about the z-axis perpendicular to the paper-- equals $1 / 12 \mathrm{~m}$ times a squared plus b squared. If you're lucky, you may find this result in a table. If not, you may have to the derive it as I just did.

Suppose we didn't want to know the moment of inertia about the axis c , as you see here, but suppose we wanted to know the moment of inertia about point P here, axis through P perpendicular to the paper, and that this separation between P and c is bd. You guessed it: I already know the moment of inertia about c. If I want to know the moment of inertia about the axis point P, and these two axes are parallel, now I can apply the parallel axis theorem again. I know the vertical axis about point c , and so therefore the moment of inertia about point P-- a vertical axis perpendicular to the paper-- is now the moment of inertia about point c about this axis plus m times d squared. I will write that m divided by 12 a squared plus b squared plus m d squared.

I want you to remember this, because I'm going to use it later when I'm going to calculate the oscillation of a ruler with a pin through point P. It's going to oscillate back and forth in a gravitational field.

Remember this and keep this in mind: that's the moment of inertia about an axis through P of this uniform flat sheet which has width a and length b, and the separation to the center of mass is d. That's the separation.

