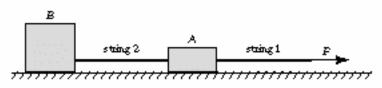
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

Physics 8.01T

Fall Term 2004

In-Class Problems 4, and 5: Newton's Laws of Motion Solutions

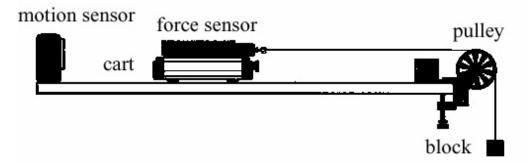

We would like each group to apply the problem solving strategy with the four stages (see below) to answer the following two problems.

- I. Understand get a conceptual grasp of the problem
- II. Devise a Plan set up a procedure to obtain the desired solution
- III. Carry our your plan solve the problem!
- IV. Look Back check your solution and method of solution

In-Class Problem 4 Concept Question: (*Newton's third law*)

In the situation below, a person pulls a string attached to block A, which is in turn attached to another, heavier block B via a second string. Assume the strings are massless and inextensible; and ignore friction.

- a) Does block A have a larger, equal, or smaller acceleration than block B?
- b) What is the force of string 1 on block A? What is the force of string 2 on block B? Explain your answers.



a) Since string 2 doesn't stretch, but
block A and block B move together, so
the accelerations of the blocks are equal

$$q_3=q_A=a$$

b) Free Body Diagrams:
Tais string 2: Tain Tais 2 on string 2 is messloss
 \Rightarrow Tain $=$ Tais $=$ Tain presses through
string 2: Tain $=$ Tain $=$ F
on string 1: F $=$ Tain $=$ F
on string 1: F $=$ Tain $=$ F
on string 1: F $=$ Tain $=$ F
on Block B: $-\pi \hat{L}$ B $=$ Tais
 $T_{B,2} = m_B a$ $T_0^2 = m_B a$
on Block B: $-\pi \hat{L}$ B $=$ Tain
 $T_{A,1} = T_1 = T_{A,1}$
 $T_{A,2} = m_B a$ $T_0^2 = m_B a$
on Block A: $T_{A,2} = m_B a$
 $T_1 = T_1 =$

In-Class Problem 5: Newton's Laws of Motion

Consider a track with a pulley located at the end. The force sensor and cart have total mass m_1 . They are connected by a inextensible rope of length l (passing over the pulley) to a block of mass m_2 . You may vary the mass of the block by adding additional weights. You may ignore the small mass of the rope and pulley. The coefficient of static friction between the car and the track is μ_s , and the coefficient of kinetic friction is μ_k . Assume that the coefficient of kinetic friction is less than the coefficient of static friction, $\mu_k < \mu_s$. Assume that the gravitational constant is g.

- a) What additional weight m_w do you need to add to the block such that the force sensor and cart just start slipping? Express your answer in terms of the relevant given information.
- b) Suppose you now add an extra weight m_3 so that the total mass of the block and weights is $m_2 + m_w + m_3$. The coefficient of kinetic friction between the cart and the track is μ_k . What then is the acceleration of the block?

You may want to consider these questions.

I. Understand – get a conceptual grasp of the problem

You may find the following helpful. Draw a coordinate system for both the cart and force sensor, and one for the block. Clearly indicate your choice of origins, axes, and choice of positive directions. Draw a (free body) force diagram for the system consisting of the cart and force sensor. Draw a (free body) force diagram for the block. Identify and reaction-action pairs of forces. Is the tension in the string constant?

II. Devise a Plan - set up a procedure to obtain the desired solution

What are the equations of motion for the system consisting of the cart and force sensor; and for the block? What is the "just slipping condition"? What physical condition is different in part b) compared to part a)?

III. Carry our your plan – solve the problem!

Do you have enough information to solve the problem?

IV. Look Back – check your solution and method of solution

Do you think the coefficient of static friction is larger, equal to, or smaller, than the coefficient of kinetic friction? Explain your reasoning.

Force Diegram
on sensor and cert

$$f_s = \frac{1}{1} \frac{1}{1} \frac{1}{N} \frac{1}{1} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{N} \frac{1}{1} \frac{1}{2} \frac{1$$

$$f_{x} \leftarrow \frac{[m_{1}]}{N} = \pi' \int_{-\pi'}^{\pi'} \int_{-\pi'}^{\pi'} \int_{-\pi'}^{\pi'} \frac{\pi'}{m_{2} + m_{\omega} + m_{3}} \int_{0}^{\pi'} \int_{0}^{\pi'} \frac{1}{m_{2} + m_{\omega} + m_{3}} \int_{0}^{\pi'} \int_{0}^{\pi'} \frac{1}{m_{2} + m_{\omega} + m_{3}} \int_{0}^{\pi'} \frac{1}{m_{3} + m_{3}} \int_{0}^$$