
Problem 24: Two acrobats. 

An acrobat of mass mA  jumps upwards off a trampoline with an initial velocity v 0 . At a 
height h0, the acrobat grabs a clown of mass mB . Assume that the time the acrobat takes 
to grab the clown is negligibly small. 

a) What is the velocity of the acrobat immediately before grabbing the clown? 

b) What is the velocity of the acrobat immediately after grabbing the clown? 

c) How high do the acrobat and clown rise? How high would the acrobat go in the 
limit that the mass of the acrobat is much heavier than the mass of the clown? 

d)	 If the acrobat missed the clown, how high would the acrobat go? How does this 
compare to your limit in part c)? 

Solution: 

Modeling the problem: The first important observation to make is that there is a collision 
between the acrobat and the clown. This collision is completely inelastic in that two 
bodies collide and “stick’ together after the collision. Since we are not given any specific 
details of the collision, we cannot describe the microdynamical description of how the 
acrobat slows down and how the clown speeds up. However if we choose as our system 
the acrobat, clown, and the earth, then the details of the collision are determined by 
internal forces.  

We can identify four states in this problem. We need to specific the position and 
velocities of the acrobat and the clown in each of these states. Since this is essentially one 
dimensional motion, let’s choose an origin at the trampoline and the positive y-axis 
upwards. 



rState 1: Acrobat A just leaves trampoline with initial velocity v1, A = v0 ĵ , and initial 
position y1, A = 0 . Denote this time by t1 = 0 . Clown B is at rest at the position y1, B = h0 . 

State 2:  Acrobat A just arrives at platform located at y2, A = y2,B = h0 with velocity 
r v2, A = v2, A ĵ , immediately before grabbing Clown B. Denote this time by t2 . 

State 3: The collision lasts a time ∆tcol . During this time interval  acrobat A grabs Clown 
rB and the two acrobats and at the end of the interval rise together with velocity v3 = v3 ĵ . 

Denote the time at the end of this interval by t3 = t2 + ∆tcol .The key assumption is that the 
collision time is instantaneous ∆tcol ≅ 0 . 

State 4: The two acrobats rise to a final height y = hf  and hence are at rest, v r 4 = 0 
r 

.f 

Model: 

Since there are no external forces doing work between states 1 and 2, and states 3 and 4 
the mechanical energy is constant between these states.  

There are no external forces acting during the time interval between states 2 and 3. 
Therefore during the collision, the total momentum of the system is constant. The change 
in the earth’s momentum is negligible but there is some slowing down of the acrobat A 
during the collision. If the collision lasts a significant length of time, then we need to 
calculate this effect. However by assuming the collision is instantaneous, we can ignore 
this slowing down, and then the change in momentum of the two acrobats before and 
after the collision is zero.

 State 1 to 2: 

(Choose zero potential energy U y  = 0) = 0 . The mechanical energy in state 1 is  

E1 = K U1 = 
1 m  v  2 +m  gh  .1 + 
2 A 0 B 0 

The mechanical energy is state 2 is  

E2 = K2 +U = 
1 m  v  2 +m  gh  +m  gh  .2 2 A 2,  A A 0 B 0 

So 

E2 − E1 = 
1 2 

2 Am  v  2,  A +m  gh  −
1 m  v  0

2 = 0 .A 02 A 



We can solve this for the speed of acrobat A in state2. 

1/ 2v2, A = (v2 − 2gh  ) .0 0 

State 2 to State 3: 

Momentum in state 2 is only due to acrobat A 

r r r
2 1/ 2 j .p = m v2, A j = m (v − 2gh  )2, A A A 0 0 

The momentum in state 3 is  

r r 
p = (m + mB )v j .3 A 3 

Since momentum is unchanged, 

r r 
( 2m v0 − 2gh  )1/ 2 j = (m + mB )v j .A 0 A 3 

Wed can solve this equation for the speed of the acrobat and the clown after the collision, 

1/ 2v3 = 
mA

m 
+ 

A

mB 

(v0
2 − 2gh  0 ) . 

State 3 to State 4: 

The mechanical energy in state 3 is  

1 ) 2E3 = K3 + U3 = (m + m  v  3 + (m + mB )gh  . 
2 A B A 0 

The mechanical energy is state 4 is  

E4 = U4 = (m + mB )gh  .A f 

So 

) )E4 − E3 = 
1
2 

(mA + mB )v2 + (m + m gh  − (m + m gh  = 0 .3 A B 0 A B f 

We can solve this for the final height of the acrobat and the clown  



hf = 
1 v3

2 + h0 . 
2g 

We can use our result form state 2 to state 3 for the speed after the collision to find the 
final height in terms of the speed of acrobat A instate 1 and the initial height of clown B, 

2mA 2 )hf = 
1 mA 

2

(v2 − 2gh  ) + h = 
2
1 
g (m + mB )2 v0 + mB (2m + m  gh  . 

2 (  0 0 0	 A B 0g m  + mB )2 
A	 A 

When the mass of the acrobat is much greater than the mass of the clown mA > mB , the 
2 

mass ratio becomes 
(m

m 
+

A

mB )2 ≅ 1  and so the height becomes 
A 

= 
1 mA 

2

(v2 − 2gh  ) + h ≅ 
2
1 
g

(v0
2 − 2gh  ) + h = 

2 (  0 0 0	 0 0 v0hf g m  + mB )2	 2
1 
g 

2 

A 

d)	 If the acrobat misses the clown, then the mechanical energy does not change 
between the ground and the top, so let’s choose only the acrobat and earth as our 
system, then the initial mechanical energy is 

E1 = K1 = 
1 m v  2 

2 A 0 

The final mechanical energy when the acrobat is at the highest point is 

E f = U f = m gh ′ .A	 f 

Since mechanical energy is constant 

Ef − E1 = m gh  ′ − 
1 m v  0

2 = 0 .A f 2	 A 

Solve for the final height 

hf 
′ = 

2
1 
g

v0
2 . 

This agree in the limit when the mass of the acrobat is much greater than the mass of the 
clown that you found in part c). 



Problem 25: Exploding Projectile 

 An instrument-carrying projectile of mass m1  accidentally explodes at the top of 
its trajectory, a height h  above the ground. The horizontal distance between launch point 0

and the explosion is x0 . Let v0  denote the horizontal velocity of the projectile at the top 
of its trajectory. The projectile breaks into two pieces which fly apart horizontally. The 
larger piece, m3 , has three times the mass of the smaller piece, m2 . To the surprise of the 
scientist in charge, the smaller piece returns to earth at the launching station. Neglect air 
resistance and effects due to the earth’s curvature.  

a) Find how far the heavier projectile goes using just center of mass arguments. 

b) What is the velocity of the projectile at the top of its flight just before the 
collision? 

c) What is the velocity of the smaller piece just after the collision? 

d) What is the velocity of the larger piece just after the collision? 

e) How far away, x f , from the original launching  point does the larger piece land?  

Solution: 

a)	 Since the explosive forces are all internal, the center of mass of the system will 
travel a distance xcm, f = 2x0  when it hits the ground. The final center of mass is 
given by 

m x  32 2,  f + m  x  3,  f=	 .xcm, f + m3m2 

Since the smaller object returns to the origin, the final position is given by x2, f = 0 . 
Therefore the center of mass becomes 



m x
2x 0 = 3 3,  f . 

+ m 3m 2 

Solve for the final position of the heavier object 

x 3, f = 
m 2 + m 3 2x 0 . 

m 3 

Since mass is conserved, m 1 = m 2 + m 3 , and the heavier fragment is three times the mass 
of the lighter piece, m 3 = 3m 2 . Therefore m 2 = (1 4) m 1 and m 3 = (3 4) m 1 . 

Therefore 

(1 4) m + (3  4  ) m 
2x 0 = 

81 1=x 3, f (3 4) m 3 
x 0 

1 

part b) 

We begin by identifying various states. 

State 0, time t 0 : The projectile is launched.  

State 1 time t 1 : The projectile is at the top of it’s flight immediately before the explosion. 

The mass is m1  and the velocity of the projectile is v 1 . 


State 2 time t 2 : Immediately after the explosion, the projectile breaks into two pieces 

State 3 time t f : The two pieces strike the ground. (They both take the same amount of 
time to reach the ground since they are falling from the same height and both have no 
initial velocity in the vertical direction). 

The momentum flow diagram for states 1 and 2 is shown below. 

The initial momentum before the explosion is 



total = m v1 .px,0 1 

The momentum immediately after the explosion is 

total px f  = −m v2 +m  v  3 . , 2 3 

Since the collision is instantaneous, momentum is conserved in the horizontal direction, 

total total = ppx,0 x, f . 

 If the collision were not instantaneous, then the masses would descend during the 
explosion and the velocities would no longer have only x-components. So the condition 
for conservation of momentum in the x-direction is: 

m v  = −m  v  2 +m  v  1 1 2  3 3  

Since mass is conserved, m1 = m2 +m3 , and the heavier fragment is three times the mass 
of the lighter piece, m3 = 3m2 . Therefore m2 = (1 4)m and m3 = (3 4)m1 .1 

There are still two unknown, v2  and v3 . However there is an additional piece of 
information: the lighter mass returns exactly to the starting position. This implies that 
v2 = v1 . Recall from our study of projectile motion, that the horizontal distance is given 
by x0 = v t  , independent of the mass. The time that it takes the lighter mass to hit the 1  1  

ground is the same as the time it takes the original projectile to reach the top of its flight 
(neglecting air resistance). Therefore the velocities must be the same since they traveled 
the same distance. So the conservation of momentum equation is now, 

1 3 m v  = −  m v  + m v3 .1 1  4 1  1  4 1 

This equation can now solved for the velocity of the larger piece immediately after the 
collision, 

5 
= v1 .v3 3 

The larger piece also takes the same amount of time t1  to hit he ground as the smaller 
piece. Hence it travels a distance  

5 5 
= v t  = v  t  = x0 .x3  3  1  3 1  1  3 



Therefore the total distance the larger piece traveled from the launching station is 

5 8 x f = + x 0 = .x 0 x 03 3 

Problem 26: Bouncing Superballs 

Two superballs are dropped from a height above the ground. The ball on top has a mass 
m 1 . The ball on the bottom has a mass m . Assume that the lower ball collides elastically 2

with the ground. Then as the lower ball starts to move upward, it collides elastically with 
the upper ball that is still moving downwards. How high will the upper ball rebound in 
the air? Assume that m 2 >> m . Hint: consider this collision from an inertial reference 1 

frame that moves upward with the same speed as the lower ball has after it collides with 
ground. What speed does the upper ball have in this reference frame after it collides with 
the lower ball? 

Solution: There are five states to this motion. 

Initial State  time t 0 : Superballs are released a height h0  above the ground 

State 1 time t 1 : Superballs just reach the ground with velocity v 1,0 

State 2 time t 2 : Immediately before collision of large superball and small superball. 
Large superball collides elastically with ground and reverses direction with same 
magnitude of velocity, v 2,0 = v 1,0 . Small superball still moving down with velocity v 1,0 . 

State 3 time t 3 : Immediately after collision of large superball and small superball. Small 
superball moves upward with speed . Large superball moves upward with speed v 1, f v 2, f 

Final State time t f : Small superball reaches maximum height hf above the ground 



Choice of Reference Frame: 

This collision is best analyzed from the reference frame of the observer moving upward 
with speed v 2,0 = v 1,0 , the velocity of m2  just after it rebounded with the ground. In this 
frame immediately before the collision, the small superball is moving downward with 

′twice the speed as in the lab frame, v 1,0 = 2v 1,0 

Assumption: The mass of the large superball is much heavier than the mass of the small 
superball, m 2 >> m . This enables us to consider the collision  (states 2 and 3) to be1 

equivalent to the small superball bouncing elastically off a hard wall with essentially no 
recoil of the large superball.  

In the large superball reference frame the large superball is at rest  after the collision. 
′Before the collision, m1  has velocity v 1,0 = 2v 1,0 . Since the collision between the two 

superballs is perfectly elastic, m1  rebounds with velocity v 1, f 
′ = 2v 1, f . 

However, in the lab frame, the small superball  is moving with speed 

v 1, f = 2v 1,0 + v = 3v 1,0 .1,0 

Therefore, small superball  goes upwards to a height given byhf 

−∆K 3, f =  ∆  U 3, f 

which is just the condition that 

21
2 

m 1 (3v 1,0  ) = m 1 g  hf 



Recall that we can also use conservation of energy between the Initial State and State 1 to 
calculate the velocity of the balls just before they hit the ground,  

∆K0,1 = −∆  U0,1 . 

Thus 

1 2 
m v1,0  ) = m  gh  . 

2 1 ( 1 0 

We can solve for hf  in terms of h0  since 
1m ghf = 9
2 

m  v  1 01  1,0
2 = 9m  gh  1 

Thus 

hf = 9h0 . 



PRS Question: Exothermic Reaction 

Consider the exothermic reaction (final kinetic energy is greater than the initial kinetic 
energy). 

+ → H2 + 5ev  H H  

Two hydrogen atoms collide and produce a diatomic hydrogen molecule. This reaction  

1.	 is possible. 
2.	 either violates conservation of energy or violates conservation of momentum but 

not both. 
3.	 conserves conservation of energy and momentum but is not possible for other 

reasons. 

Solution: The reaction  

+  →  H2 + 5eV  H H  

is an exothermic reaction. The unit for energy is called the electron-volt. This is the 
amount of work done by the electric force in moving one electon across a 1 volt electric 

19potential difference. In SI units 1eV =1.6  ×10  − J . This means that K > K0 . Sincef 

nc	 ncK K f − K0 =W , the non-conservative work is positive, W = 5eV  .∆ =  

First argument: In the center of mass frame, the total momentum is zero,  (p 
v 

total ) = 0 . 
cm 

Assume that momentum is constant. The momentum flow diagram looks like: 

The final velocity in the center of mass frame must be zero because the total momentum 
is zero. However, K f 

′ > K0 
′  since the reaction is exothermic, so an exothermic reaction 

in which a two-body collision results in only one final body is impossible unless there is a 
second final body to carry momentum away. 

Similarly if you assume that energy is constant, then the final kinetic energy is greater 
than the initial kinetic energy so the final molecule must be moving but this violates no 
change in momentum since the initial momentum is zero in the center of mass frame. 



Second argument: In the lab frame, the momentum flow diagram is  

Conservation of momentum requires that 

v total v total p0 = p f , 

which becomes 

v v v m (v + v2 ) = 2mv1 f . 

Therefore the final velocity is 

v v f = 
1
2 
(v v 1 + v v 2 ) . 

The work-kinetic energy theorem, 

K f = K0 + 5eV  

becomes 

1 v v  v v  1 v v(2m)(v v  ) = 
1
2 

mv1 ⋅ v1 + mv2 ⋅ +  5eV  .⋅ 
2 f f v22 

Now substitute for the final velocity, yielding 

1 v v v 1 v v 1 v v 5 
2 
(v1 + v2 ) ⋅ 

1 (v v 1 + v2 ) = v1 ⋅ +  v2 ⋅ +  eV .v1 v22 2 2 m 

Expanding, this becomes 

1 v v  1 v v 1 v v  1 v v  1 v v 5 v v1 v2 1 ⋅ =  v v1 v24 1 ⋅ + v2 ⋅ +  v v2 2 1 ⋅ + v2 ⋅ +  eV . 
4 2 2 m 

A little algebra yields, 



⋅ ⋅ ⋅ 
1 v v v v  v v0 = (v v  v  v  − 2 (v v2 )) + 5 eV .1 1 + 2 2 14 m 

This can be simplified, 

1 v v v v0 = (v  v  − ) ⋅ −  +  
5 eV . 

4 1 2 (v  v  2 )1 m 

Thus the work-kinetic energy theorem requires the condition 

1 v v v v 
4 1 − 2 ) ⋅ −  = −

5 eV .(v  v  (v  v  2 )1 m 

v − v 2The left hand side is always positive since dot product of a vector, (v  v  ) , with itself 1 

is always positive or zero (if the vector is the zero vector). So this is condition is 
impossible, the reaction as described cannot happen. 

Two hydrogen atoms can form a hydrogen molecule provided that there is a third 
‘catalyst’ to carry away the momentum  (as seen in the center of mass reference frame). 
Then the reaction can satisfy conservation of energy and momentum. 


