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In-Class Problems 30-32: Moment of Inertia, Torque, and Pendulum: 
Solutions 

Problem 30 Moment of Inertia of a Uniform disc. 

A uniform disc of mass m  and radius R  is mounted on an axis passing through the center of the 
disc, perpendicular to the plane of the disc. In this problem, you will calculate the moment of 
inertia about two different axes that pass perpendicular to the disc. One passes through the center 
of mass of the disc and the second passes through a point on the rim of the disc a distance R 
from the center. As a starting point, consider the contribution to the moment of inertia from the 
mass element dm show in the figure below. 

Step 1: We can take the point S  to be the center of mass of the disc. The axis of rotation passes 
through the center of the disc, perpendicular to the plane of the disc.  

Step 2: We choose cylindrical coordinates with the coordinates ( r,θ )  in the plane and the z -axis 
perpendicular to the plane. 

Step 3: The area element da = rdrdθ  can be thought of as the product of arc length rdθ  with the 
radial width dr , (Figure 9). Since the disc is uniform, the mass per unit area is a constant,  

mσ = 
dm mtotal= = 2 .
da Area πR 

Therefore the mass in an infinitesimal area element a distance r  from the axis of rotation is 
given by 

dm =σ rdrdθ . 

2Step 4: When the disc rotates, the mass element traces out a circle of radius r 
⊥
= r 2 . 
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Step 5: The integral is now an integral in two dimensions as the angle θ  varies from θ = 0 to 
=θ = 2π , and the radial coordinate r  varies from r = 0 to r R . Thus the limits of the integral 

are 

r R θ =2π r  R  θ =2π= = 
2 2 m 2r⊥ r rIcm = ∫ ( )  dm =σ ∫  ∫ ( )  rdrdθ =

πR2 ∫ ∫ ( )  rdrd θ . 
body r=0 θ =0 r=0 θ =0 

. 
Step 6: The integral can now be explicitly calculated by first integrating the θ -coordinate: 

r R  ⎛θ =2π m r R  
θ =2π 3 m r R  

3 2m r R  
3 

= = = = 

I = 
m 

2 ∫ ∫  dθ ⎟
⎞( )  rdr =

πR2 ∫ (θ θ=0 ) r dr =
πR2 

r 
∫
=0

2π r dr = 
R2 ∫ r dr .⎜ r2 

cm πR r =0 ⎝ θ =0 ⎠ r =0 r=0 

and then integrating the r -coordinate: 

r R= =2m r R  
3 2m  r  4 2m  R  4 1I = 2 ∫ r dr  = 2 = = mR  2 

cm 2R 4 R 4 2R r=0 r=0 
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Problem 30 Turntable 

× −A turntable is a uniform disc of mass 1.2 kg and radius 1.3 10 1m . The turntable is spinning at 
an initial constant frequency of f0 = 33 cycles/min . The motor is turned off and the turntable 
slows to a stop in 8.0 s due to frictional torque. Assume that the angular acceleration is constant. 
What is the magnitude of the frictional torque acting on the disc?  

Answer: Initially, the disc is spinning with a frequency 

f0 = (33 cycles )(1min cycles ) = 0.55 = 0.55Hz . 
min 60 s s 

So the initial angular velocity is 

rad rad ω = 2π f0 = (2π )(0.55  cycles ) = 3.5  .0 cycle s s 

The final angular velocity is zero, so the angular acceleration is 

/α = 
∆ω

=
ω f −ω0 =

−3.5 rad / s 
=  −  4.3rad s 2 . 

∆t t f − t0 0.8s 

Since the angular acceleration is negative, we confirm that the disc is slowing down. 

The moment of inertia of the turntable about an axis passing perpendicular to the disc and 
through the center of mass is 

1 -1 2  2I = mR  2 = 
1 (1.2 kg)(1.3×10 m)  =1.01×10-2  kg ⋅mcm 2 2 

 So the magnitude of the frictional torque is 

total × −2 2 / 2 × −2= IS α = (1.01 10 kg  m  )(4.3 rad  s  ) = 4.3 10 N ⋅ m .⋅τ fric 
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Problem 31: Simple Pendulum 

A pendulum consists of an object hanging from the end of a string. The object is pulled to one 
side and allowed to oscillate. If the object has negligible size and the string is massless, then the 
pendulum is called a simple pendulum.  

a) Find the equation of motion for the object. 


b) Show that the object undergoes simple harmonic motion when the initial angle is small 

and you can approximate sinθ ≅ θ . 


c) For small angles, what is the period of oscillation?


d) Is the angular velocity the same as the angular frequency for the object?


The torque about the pivot point is given by 

r r r 
−τS = r , ×mg = lr̂ ×mg  ( sin  θ θ̂ + cos  θ r̂) = −  lmg  sin  θ k̂ .s  m  

The angular acceleration is a vector pointing along the z-axis, 

2 rα = 
d θ k̂ .2dt 

2d θRemark: The z-component of the angular acceleration vector is and can be positive or2dt 
negative. 


The moment of inertial of a point mass about the pivot point is 


2IS = ml 
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The rotational dynamical equation is 

rτr S = ISα . 

Therefore 

2 

−lmg sinθ k̂ = ml 2 d θ k̂ .2dt 

Thus we have the equation of motion for the simple pendulum, 

2 

−lmg sinθ = ml 2 d θ 
2 .

dt 

When the angle of oscillation is small, then we can use the small angle approximation 

sinθ ≅ θ . 

Then the pendulum equation becomes 

2d θ
≅ −

g θ .2dt l 

This equation is similar to the mass-spring equation, 

2d x  k
= −  x2dt m 

that described the oscillation of a mass about the equilibrium point of a spring. Recall that the 
angular frequency of oscillation was given by 

k 
= .ωspring m 

So by comparison, the angular frequency of oscillation for the pendulum is approximately  

ωpendulum ≅ 
g 
l 

, 

with period 

2π lT = ≅ 2π .
ω gp 
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By analogy with the spring, if the pendulum has been displaced by a small angle θ  and released0

from rest, the angle that the pendulum makes with the vertical as a function of time is given by 

( )  =θ cos((  g  l t  θ t 0 /  ) ) . 

The angular velocity of the pendulum is then given by the derivative 

θ / / / )d  dt = −( g l  )θ sin((  g l t  ) .0 

This varies sinusoidally with time and is not equal to the angular frequency which is a constant 
associated with the periodic nature of the motion. 
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