MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics

Physics 8.01 TEAL
Fall Term 2003

Exam 2: Equation Summary

One Dimensional Kinematics:

$\overrightarrow{\mathbf{v}}=d \overrightarrow{\mathbf{r}} / d t, \overrightarrow{\mathbf{a}}=d \overrightarrow{\mathbf{v}} / d t$
$v_{x}(t)-v_{x, 0}=\int_{t^{\prime}=0}^{t^{\prime}=t} a_{x}\left(t^{\prime}\right) d t^{\prime} \quad x(t)-x_{0}=\int_{t^{\prime}=0}^{t^{\prime}=t} v_{x}\left(t^{\prime}\right) d t^{\prime}$

Constant Acceleration:

$x(t)=x_{0}+v_{x, 0}\left(t-t_{0}\right)+\frac{1}{2} a_{x}\left(t-t_{0}\right)^{2} \quad v_{x}(t)=v_{x, 0}+a_{x}\left(t-t_{0}\right)$
$y(t)=y_{0}+v_{y, 0}\left(t-t_{0}\right)+\frac{1}{2} a_{y}\left(t-t_{0}\right)^{2} \quad v_{y}(t)=v_{y, 0}+a_{y}\left(t-t_{0}\right)$
where $x_{0}, v_{x, 0}, y_{0}, v_{y, 0}$ are the initial position and velocities components at $t=t_{0}$
Newton's Second Law: Force, Mass, Acceleration
$\overrightarrow{\mathbf{F}} \equiv m \overrightarrow{\mathbf{a}} \quad \overrightarrow{\mathbf{F}}^{\text {total }}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2} \quad F_{x}^{\text {total }}=m a_{x} \quad F_{y}^{\text {total }}=m a_{y} \quad F_{z}^{\text {total }}=m a_{z}$

Newton's Third Law:

$\overrightarrow{\mathbf{F}}_{1,2}=-\overrightarrow{\mathbf{F}}_{2,1}$

Force Laws:

Universal Law of Gravity: $\overrightarrow{\mathbf{F}}_{1,2}=-G \frac{m_{1} m_{2}}{r_{1,2}{ }^{2}} \hat{\mathbf{r}}_{1,2}$, attractive
Gravity near surface of earth: $\overrightarrow{\mathbf{F}}_{\text {grav }}=m_{\text {grav }} \overrightarrow{\mathbf{g}}$, towards earth
Contact force: $\overrightarrow{\mathbf{F}}_{\text {contact }}=\overrightarrow{\mathbf{N}}+\overrightarrow{\mathbf{f}}$, depends on applied forces

Static Friction: $0 \leq f_{s} \leq f_{s, \max }=\mu_{s} N$ direction depends on applied forces
Kinetic Friction: $f_{k}=\mu_{k} N$ opposes motion

Hooke's Law: $F=k|\Delta x|$, restoring

Kinematics Circular Motion:

arc length: $s=R \theta$; angular velocity: $\omega=d \theta / d t$ tangential velocity: $v=R \omega$; angular acceleration: $\alpha=d \omega / d t=d^{2} \theta / d t^{2}$; tangential acceleration $a_{\theta}=R \alpha$.

Period: $T=\frac{2 \pi R}{v}=\frac{2 \pi R}{R \omega}=\frac{2 \pi}{\omega}$; frequency: $f=\frac{1}{T}=\frac{\omega}{2 \pi}$,

Radial Acceleration: $\left|a_{r}\right|=R \omega^{2} ;\left|a_{r}\right|=\frac{v^{2}}{R} ;\left|a_{r}\right|=4 \pi^{2} R f^{2} ;\left|a_{r}\right|=\frac{4 \pi^{2} R}{T^{2}}$
Center of Mass: $\overrightarrow{\mathbf{R}}_{c m}=\frac{\sum_{i=1}^{i=N} m_{i} \overrightarrow{\mathbf{r}}_{i}}{\sum_{i=1}^{i=N} m_{i}} \rightarrow \frac{\int_{\text {body }} d m \overrightarrow{\mathbf{r}}}{\int_{\text {body }} d m}$;
Velocity of Center of Mass: $\overrightarrow{\mathbf{V}}_{c m}=\frac{\sum_{i=1}^{i=N} m_{i} \overrightarrow{\mathbf{v}}_{i}}{\sum_{i=1}^{i=N} m_{i}} \rightarrow \frac{\int_{\text {body }} d m \overrightarrow{\mathbf{v}}}{\int_{\text {body }} d m}$
Torque: $\overrightarrow{\boldsymbol{\tau}}_{S}=\overrightarrow{\mathbf{r}}_{S, P} \times \overrightarrow{\mathbf{F}}_{P}\left|\overrightarrow{\boldsymbol{\tau}}_{S}\right|=\left|\overrightarrow{\mathbf{r}}_{S, P}\right|\left|\overrightarrow{\mathbf{F}}_{P}\right| \sin \theta=r_{\perp} F=r F_{\perp}$

Static Equilibrium: $\overrightarrow{\mathbf{F}}_{\text {total }}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\ldots=\overrightarrow{\mathbf{0}} ; \quad \overrightarrow{\boldsymbol{\tau}}_{S}^{\text {total }}=\overrightarrow{\boldsymbol{\tau}}_{s, 1}+\overrightarrow{\boldsymbol{\tau}}_{s, 2}+\ldots=\overrightarrow{\mathbf{0}}$.
Kinetic Energy: $K=\frac{1}{2} m v^{2} ; \Delta K=\frac{1}{2} m v_{f}{ }^{2}-\frac{1}{2} m v_{0}{ }^{2}$
Work: $W=\int_{r_{0}}^{r_{f}} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}$; Work-Change in Kinetic Energy: $W^{\text {total }}=\Delta K$
Power: $P=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{v}}=d K / d t$
Potential Energy: $\Delta U=-W_{\text {conservative }}=-\int_{A}^{B} \overrightarrow{\mathbf{F}}_{c} \cdot d \overrightarrow{\mathbf{r}}$

Potential Energy Functions with Zero Points:

Constant Gravity: $U(y)=m g y$ with $U\left(y_{0}=0\right)=0$.
Inverse Square Gravity: $U_{\text {gravity }}(\mathrm{r})=-\frac{G m_{1} m_{2}}{r}$ with $U_{\text {gravity }}\left(\mathrm{r}_{0}=\infty\right) \equiv 0$.
Hooke's Law: $U_{\text {spring }}(x)=\frac{1}{2} k x^{2}$ with $U_{\text {spring }}(x=0) \equiv 0$.
Work- Change in Mechanical Energy: $\overrightarrow{\mathbf{F}}^{\text {total }}=\overrightarrow{\mathbf{F}}_{c}^{\text {total }}+\overrightarrow{\mathbf{F}}_{n c}^{\text {total }}$;
$W^{\text {total }}=W_{c}^{\text {total }}+W_{n c}^{\text {total }}=\Delta K ; \quad W_{n c}=\Delta K+\Delta U^{\text {total }}=\Delta E_{\text {mech }}, \quad E_{\text {mech }}=K+U^{\text {total }}$
$W_{n c}=\Delta E_{\text {mech }}=E_{f}-E_{0}=\left(K_{f}+U_{f}^{\text {total }}\right)-\left(K_{0}+U_{0}^{\text {total }}\right)$

