MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics

Physics 8.01T
Fall Term 2004

Exam 2 Solutions

Problem 1: (20 points) Concept Questions: Circle the correct answer.
a) (4 points) A puck of mass M is moving in a circle at uniform speed on a frictionless table as shown above. It is held by a string which holds a suspended bob, also of mass M, at rest below the table. Half of the length of the string is above the tabletop and half below. What is the centripetal acceleration of the moving puck?

$$
T-m, g=0
$$

$$
-T=-\frac{m_{1} v^{2}}{r}
$$

1. less than g
2. g
$\Rightarrow T=m, g$
$m_{1} g=\frac{m_{1} v^{2}}{r}$
3. greater than g
$\Rightarrow \frac{\nu^{2}}{r}=g$
b) (4 points) An object moves counter-clockwise along the circular path shown below. As it moves along the path its acceleration vector continuously points toward point S. The object

$$
\begin{aligned}
& \text { At point } p: \\
& \vec{a}_{p} \text { has positive } \\
& \text { component in } \hat{e} \\
& \text { direction indicating }
\end{aligned}
$$

$Q_{\text {tan }}>0$, speeds up
Atpoints: \vec{a}_{s} has

1. speeds up at P, Q, and R.
2. slows down at P, Q, and R.
3.) speeds up at P and slows down at R.
3. slows down at P and speeds up at R.
4. speeds up at Q.
5. slows down at Q.
6. No object can execute such a motion.

$$
\begin{aligned}
& \text { only radially inward } \\
& \text { component. } \\
& \text { Atpoint } R=\vec{a}_{R} \text { has }
\end{aligned}
$$

$$
\begin{aligned}
& \text { negative component in } \\
& \hat{e} \text { directeon, undicatisa } \\
& a_{t a n}<0 \text {, slows down. }
\end{aligned}
$$

c) (4 points) A ball is rolling without slipping in a spiral path down the inside of a hollow cone.

$$
==\begin{aligned}
& \text { Since the Gall rolls } \\
& \text { without slipping } \\
& \text { contact point is at } \\
& \text { rest, frictor does no }
\end{aligned}
$$

1. positive
(2.) zero
2. negative
3. Impossible to determine
d) (4 points) Suppose you want to ride your mountain bike up a steep hill. Two paths lead from the base to the top, one twice as long as the other. You start and end at rest. Compared to the average force you would exert if you took the short path, the average force you exert along the longer path is
. one quarter as much.

$$
W_{\text {ext }}=m g h=\left(F_{a v e}\right)_{1} x_{1}=\left(F_{a v e}\right)_{2} x_{2}
$$

2. one third as much.
$\sin \varphi$
$x_{2}=2 x_{1} \Rightarrow$
$\left(\right.$ Fave) $_{2}=$ (Fare), $\frac{x_{1}}{x_{2}}=\frac{\text { (Fave }}{2}$
3. undetermined-it depends on the time taken.
e) (4 points) When the cart maximally compresses the spring at the bottom of the

4.

Part 2: Analytic Questions: Show all your work.

Problem 2: (20 points) A child is trying to shoot a marble of mass m in order to hit the center of a small box using a spring loaded marble gun. The marble gun is fixed on a table and shoots the marble horizontally from the edge of the table. The edge of the table is a height h above the top of the box (the height of which is negligibly small). The center of the box is some horizontal distance d away from the table. The spring has a spring constant k. By what distance x should the child compress the spring so that the marble lands in the center of the box? Let g denote the gravitational constant. The given quantities in this problem are m, k, g, h, and d. Express x in terms of whatever given quantities you may need.

$$
\begin{aligned}
& \text { Mechanical energy is conserved } \\
& \text { duringlaunching of marble } \\
& E_{0}=\frac{1}{2} k x^{2}=\frac{1}{2} m v_{1}^{2}=E_{1} \Rightarrow v_{1}=\sqrt{\frac{k}{m}} x \\
& \text { Marble then undergoes projectile motion } \\
& \begin{array}{r}
+y+y_{0}=h, v_{0}=v_{1}, v_{y_{10}}=0, \quad y_{f}=0, x_{f}=d \\
\quad \vdots \quad x_{f}=v_{1} t_{f}(1), 0=y_{f}=h-\frac{1}{2} g t_{f}^{2} \quad(2)
\end{array} \\
& e q(2) \Rightarrow t_{f}=\sqrt{\frac{2 h}{g}} \quad \circ q(1) \Rightarrow d=\sqrt{\frac{k}{m}} \times \sqrt{\frac{2 h}{g}} \\
& \Rightarrow \quad x=\sqrt{\frac{m g}{2 k h}} d
\end{aligned}
$$

Problem 3: (20 points) A Back Bending Exercise

When a person of mass m bends over or lifts an object, the main muscles that lift the back are the erector spinae (sacrospinal muscles). These muscles act approximately at a single point on the vertebral column and exert a force, $\overrightarrow{\mathbf{F}}_{m}$, at a point that is $2 / 3$ of the distance from base of the spine to the center of mass of the head and arms. The cord applies the force at an angle α relative to the axis of the vertebral column. The sacrum exerts a force, $\overrightarrow{\mathbf{F}}_{d}$, on the spine at an unknown angle β relative to the axis of the vertebral column.

Assume that mass of the head and arms is $m_{2}=(1 / 5) m$ where m is the mass of the person. The center of mass of the trunk is $1 / 2$ of the distance from the base of the spine to the center of mass of the head and arms. Assume that mass of the trunk is $m_{1}=(2 / 5) m$, where m is the mass of the person. Let g denote the gravitational constant.

In this problem assume the given quantities are m, α, and g. Express your answers below in terms of these quantities.
a) What is the magnitude of the force $\overrightarrow{\mathbf{F}}_{m}$ that the sacrospinal muscles exert on the spine?
b) What is the angle β that the force of the sacrum on the spine, $\overrightarrow{\mathbf{F}}_{d}$, makes relative to the axis of the vertebral column?
c) What is the magnitude of the force $\overrightarrow{\mathbf{F}}_{d}$?

Choose P to be tho point where the secrum apples the force on the spine. Choose O.
$\stackrel{\rightharpoonup}{\tau}_{p}=(0$
$\frac{2}{3} d F_{m} \sin \alpha-\frac{d}{2} m_{1} g-d m_{2} g=0$
use $m, g=\frac{2}{5} m g \quad, m_{2} g=\frac{1}{5} m g$
(1) $-F_{m} \cos \alpha+F_{d} \cos \beta=0$
(r) $\quad F_{m} \sin \alpha-F d \sin \beta-\frac{2}{8} m g-\frac{1}{5} m g=0$
(3) $\frac{2}{3} d F_{m} \sin \alpha-\frac{d}{2}\left(\frac{2}{5} m g\right)-d \frac{1}{5} m g=0$

$$
\begin{aligned}
& \varepsilon_{q}(3) \text { beconos } \\
& \frac{2}{3} d F_{m} \sin \alpha=\frac{2}{5} d m g \\
\Rightarrow & F_{m} \sin \alpha=\frac{3}{5} m g \Rightarrow F_{m}=\frac{3}{5} \frac{m g}{\sin \alpha}
\end{aligned}
$$

ε_{q} (2) beconos

$$
\begin{aligned}
& \frac{3}{5} m g-F_{d} \sin \beta-\frac{3}{5} m g=0 \\
\Rightarrow \quad & F_{d} \sin \beta=0 \Rightarrow \beta=0 \sin \Rightarrow F_{d} \neq 0
\end{aligned}
$$

$\varepsilon q(1)$ becemos

$$
\begin{aligned}
& F_{m} \cos \alpha=F_{d} \cos \beta=F_{Q} \text { since } \beta=c \\
& F_{d}=\frac{3}{5} m g \frac{\cos \alpha}{\sin \alpha}=\frac{3}{5} m g \operatorname{cotan} \alpha
\end{aligned}
$$

Problem 4: (20 points)

Consider an ideal spring that has an unstretched length l_{0}. Assume the spring has a constant k. Suppose the spring is attached to an cart of mass m that lies on a frictionless plane that is inclined by an angle θ from the horizontal. Let g denote the gravitational constant. The given quantities in this problem are l_{0}, m, k, θ, and g.

a) The spring stretches slightly to a new length $l>l_{0}$ to hold the cart in equilibrium. Find the length l in terms of the given quantities.
b) Now move the cart up along the ramp so that the spring is compressed a distance x from the unstretched length l_{0}. Then the cart is released from rest. What is the velocity of the cart when the spring has first returned to its unstretched length l_{0} ?
c) What is the period of oscillation of the cart?

initial state.

at unstretched positem
\times
Le $\} x \operatorname{sine}$ height above zero potential energy

$$
E_{0}=m g x \sin \theta+\frac{1}{2} k x^{2}
$$

final state:

$$
\begin{aligned}
& E_{0}=E_{f} \Rightarrow \frac{1}{2} k x^{2}+m g \times \sin \theta=\frac{1}{2} m v_{f}^{2} \\
& \Rightarrow v_{f}=\left(2 g \times \sin \theta+\frac{k}{m} x^{2}\right)^{1 / 2} \\
& \vec{F}_{s}=\frac{m \vec{a}}{m} \frac{d^{2} x}{d t^{2}} \\
& \Rightarrow \quad \frac{d^{2} x}{d t^{2}}+\frac{k}{m} x=g \sin \theta
\end{aligned}
$$

$$
\text { Solution: } \begin{aligned}
x & =A \cos \left(\frac{2 \pi}{T} t\right)+B \sin \left(\frac{2 \pi}{T} t\right)+C \\
\frac{d x}{d t} & =-\frac{2 \pi}{T} A \sin \left(\frac{2 \pi}{\pi} t\right)+\frac{2 \pi}{\pi} B \cos \left(\frac{2 \pi}{T} t\right) \\
\frac{d^{2} x}{d t^{2}} & =-\left(\frac{2 \pi}{T}\right)^{2}\left(A \cos \left(\frac{2 \pi t}{T} t\right)+B \sin \left(\frac{2 \pi}{T} t\right)\right) \\
& =-\left(\frac{2 \pi}{T}\right)^{2}(x-c) \\
\Rightarrow \quad-\left(\frac{2 \pi}{T}\right)^{2}(x-c) & +\frac{k}{m} x=g \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& \left.\Rightarrow\left(-\frac{2 \pi}{T}\right)^{2}+\frac{k}{1 m}\right)^{x}+\left(\frac{2 \pi}{T}\right)^{2} c-g \sin \theta=0 \\
& \Rightarrow\left(\frac{2 \pi}{T}\right)^{2}=\frac{k}{m} \text { and } c=(g \sin \theta)\left(\frac{I}{2 \pi}\right)^{2} \\
& \Rightarrow \frac{2 \pi}{T}=\sqrt{\frac{k}{m}} \text { and } c=m g \frac{\sin \theta}{k}
\end{aligned}
$$

so period $T=2 \pi \sqrt{\frac{m}{k}}$
Note: An acceptable solution would also simply state that

$$
\frac{2 \pi}{T}=\sqrt{\frac{k}{m}} \quad \text { ar } \quad T=2 \pi \sqrt{\frac{m}{k}}
$$

and the period is inoffected by the constant qrautational force a cteng on the mess-sprong throughout its motion.

Problem 5: (20 points)

A ball of negligible radius and mass m hangs from a string of length l. It is hit in such a way that it then travels in a vertical circle (ie., the tension in the string is always greater than zero). The initial speed of the ball after being struck is v_{0}. You may ignore air resistance. Let g denote the gravitational constant.

Answer: Since $\vec{T} \perp d \vec{r}, \quad W_{T}=\vec{T} \cdot d \vec{r}=0$.
So tension does no work, hence mechanical energy is constant.
initial state: bottom of circle, choose $U=0$ at bottom. $E_{0}=\frac{1}{2} m v_{0}^{2}$
final stale: half-way around, $\theta=\pi$

$$
E_{f}=\frac{1}{2} m v_{f}^{2}+m g l
$$

$$
E_{0}=E_{f} \Rightarrow \frac{1}{2} m v_{c}^{2}=\frac{1}{2} m v_{f}^{2}+m g l
$$

$$
\Rightarrow \frac{m v_{f}^{2}}{l}=\frac{m v_{c}^{2}}{l}-2 m g
$$

$$
T=\frac{m v_{f}^{2}}{l}=\frac{m v_{c}^{2}}{l}-2 m g
$$

$$
\begin{equation*}
v_{f}=\left(v_{0}^{2}-2 g l\right)^{1 / 2} \tag{14}
\end{equation*}
$$

