MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics

Physics 8.01 TEAL
Fall Term 2004

Exam 3: Equation Summary

Momentum:

$\overrightarrow{\mathbf{p}}=m \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{F}}_{\text {ave }} \Delta t=\Delta \overrightarrow{\mathbf{p}}, \quad \overrightarrow{\mathbf{F}}_{\text {ext }}^{\text {total }}=\frac{d \overrightarrow{\mathbf{p}}^{\text {total }}}{d t}$
Impulse: $\overrightarrow{\mathbf{I}} \equiv \int_{t=0}^{t=t_{f}} \overrightarrow{\mathbf{F}}(t) d t=\Delta \overrightarrow{\mathbf{p}}$
Torque: $\overrightarrow{\boldsymbol{\tau}}_{S}=\overrightarrow{\mathbf{r}}_{S, P} \times \overrightarrow{\mathbf{F}}_{P}\left|\overrightarrow{\boldsymbol{\tau}}_{S}\right|=\left|\overrightarrow{\mathbf{r}}_{S, P}\right|\left|\overrightarrow{\mathbf{F}}_{P}\right| \sin \theta=r_{\perp} F=r F_{\perp}$

Static Equilibrium:

$\overrightarrow{\mathbf{F}}_{\text {total }}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\ldots=\overrightarrow{\mathbf{0}} ; \quad \overrightarrow{\boldsymbol{\tau}}_{S}^{\text {total }}=\overrightarrow{\boldsymbol{\tau}}_{S, 1}+\overrightarrow{\boldsymbol{\tau}}_{S, 2}+\ldots=\overrightarrow{\mathbf{0}}$.
Rotational dynamics: $\overrightarrow{\boldsymbol{\tau}}_{S}^{\text {total }}=\frac{d \overrightarrow{\mathbf{L}}_{S}}{d t}$
Angular Velocity: $\overrightarrow{\boldsymbol{\omega}}=(d \theta / d t) \hat{\mathbf{k}}$
Angular Acceleration: $\overrightarrow{\boldsymbol{a}}=\left(d^{2} \theta / d t^{2}\right) \hat{\mathbf{k}}$
Fixed Axis Rotation: $\overrightarrow{\boldsymbol{\tau}}_{s}=I_{S} \overrightarrow{\boldsymbol{\alpha}}$
$\tau_{S}^{\text {total }}=I_{S} \alpha=I_{S} \frac{d \omega}{d t}$
Moment of Inertia: $I_{S}=\int_{\text {body }} d m\left(r_{\perp}\right)^{2}$
Angular Momentum: $\overrightarrow{\mathbf{L}}_{S}=\overrightarrow{\mathbf{r}}_{S, m} \times m \overrightarrow{\mathbf{v}}$,
$\left|\overrightarrow{\mathbf{L}}_{S}\right|=\left|\overrightarrow{\mathbf{r}}_{s, m}\right||m \overrightarrow{\mathbf{v}}| \sin \theta=r_{\perp} p=r p_{\perp}$

Angular Impulse:

$$
\overrightarrow{\mathbf{J}}_{S}=\int_{t_{0}}^{t_{f}} \overrightarrow{\boldsymbol{\tau}}_{s} d t=\Delta \overrightarrow{\mathbf{L}}_{S}=\overrightarrow{\mathbf{L}}_{S, f}-\overrightarrow{\mathbf{L}}_{S, 0}
$$

Rotation and Translation:

$\overrightarrow{\mathbf{L}}_{s}^{\text {total }}=\overrightarrow{\mathbf{L}}_{s}^{\text {orbital }}+\overrightarrow{\mathbf{L}}_{c m}{ }^{\text {spin }}$,
$\overrightarrow{\mathbf{L}}_{s}^{\text {orital }}=\overrightarrow{\mathbf{r}}_{s, c m} \times \overrightarrow{\mathbf{p}}^{\text {total }}$,
$\overrightarrow{\mathbf{L}}_{c m}{ }^{\text {spin }}=I_{c m} \overrightarrow{\boldsymbol{\omega}}_{\text {spin }}$
$\overrightarrow{\boldsymbol{\tau}}_{S}^{\text {orbit }}=\frac{d \overrightarrow{\mathbf{L}}_{S}{ }^{\text {orbit }}}{d t}, \overrightarrow{\boldsymbol{\tau}}_{c m}^{\text {spin }}=\frac{d \overrightarrow{\mathbf{L}}_{c m}{ }^{\text {spin }}}{d t}$

Rotational Energy: $K_{c m}=\frac{1}{2} I_{c m} \omega_{c m}{ }^{2}$
Rotational Power: $P_{\text {rot }} \equiv \frac{d W_{\text {rot }}}{d t}=\overrightarrow{\boldsymbol{\tau}}_{s} \cdot \overrightarrow{\boldsymbol{\omega}}=\tau_{s} \omega=\tau_{S} \frac{d \theta}{d t}$
One Dimensional Kinematics: $\overrightarrow{\mathbf{v}}=d \overrightarrow{\mathbf{r}} / d t, \overrightarrow{\mathbf{a}}=d \overrightarrow{\mathbf{v}} / d t$
$v_{x}(t)-v_{x, 0}=\int_{t^{\prime}=0}^{t^{\prime}=t} a_{x}\left(t^{\prime}\right) d t^{\prime} \quad x(t)-x_{0}=\int_{t^{\prime}=0}^{t^{\prime}=t} v_{x}\left(t^{\prime}\right) d t^{\prime}$

Constant Acceleration:

$x(t)=x_{0}+v_{x, 0}\left(t-t_{0}\right)+\frac{1}{2} a_{x}\left(t-t_{0}\right)^{2} \quad v_{x}(t)=v_{x, 0}+a_{x}\left(t-t_{0}\right)$
$y(t)=y_{0}+v_{y, 0}\left(t-t_{0}\right)+\frac{1}{2} a_{y}\left(t-t_{0}\right)^{2} \quad v_{y}(t)=v_{y, 0}+a_{y}\left(t-t_{0}\right)$
where $x_{0}, v_{x, 0}, y_{0}, v_{y, 0}$ are the initial position and velocities components at $t=t_{0}$

Newton's Second Law: Force, Mass, Acceleration

$\overrightarrow{\mathbf{F}} \equiv m \overrightarrow{\mathbf{a}} \quad \overrightarrow{\mathbf{F}}^{\text {total }}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2} \quad F_{x}^{\text {total }}=m a_{x} \quad F_{y}^{\text {total }}=m a_{y} \quad F_{z}^{\text {total }}=m a_{z}$
Newton's Third Law: $\overrightarrow{\mathbf{F}}_{1,2}=-\overrightarrow{\mathbf{F}}_{2,1}$

Force Laws:

Universal Law of Gravity: $\overrightarrow{\mathbf{F}}_{1,2}=-G \frac{m_{1} m_{2}}{r_{1,2}{ }^{2}} \hat{\mathbf{r}}_{1,2}$, attractive Gravity near surface of earth: $\overrightarrow{\mathbf{F}}_{\text {grav }}=m_{\text {grav }} \overrightarrow{\mathbf{g}}$, towards earth

Contact force: $\overrightarrow{\mathbf{F}}_{\text {contact }}=\overrightarrow{\mathbf{N}}+\overrightarrow{\mathbf{f}}$, depends on applied forces
Static Friction: $0 \leq f_{s} \leq f_{s, \max }=\mu_{s} N$ direction depends on applied forces

Kinetic Friction: $f_{k}=\mu_{k} N$ opposes motion

Hooke's Law: $F=k|\Delta x|$, restoring
Kinematics Circular Motion: arc length: $s=R \theta$; angular velocity: $\omega=d \theta / d t$ tangential velocity: $v=R \omega$; angular acceleration: $\alpha=d \omega / d t=d^{2} \theta / d t^{2}$; tangential acceleration $a_{\theta}=R \alpha$.

Period: $T=\frac{2 \pi R}{v}=\frac{2 \pi}{\omega}$; frequency: $f=\frac{1}{T}=\frac{\omega}{2 \pi}$,
Radial Acceleration: $\left|a_{r}\right|=R \omega^{2} ;\left|a_{r}\right|=\frac{v^{2}}{R} ;\left|a_{r}\right|=4 \pi^{2} R f^{2} ;\left|a_{r}\right|=\frac{4 \pi^{2} R}{T^{2}}$

Center of Mass: $\overrightarrow{\mathbf{R}}_{c m}=\sum_{i=1}^{i=N} m_{i} \overrightarrow{\mathbf{r}}_{i} / m^{\text {total }} \rightarrow \int_{\text {body }} d m \overrightarrow{\mathbf{r}} / m^{\text {total }}$;

Velocity of Center of Mass: $\overrightarrow{\mathbf{V}}_{c m}=\sum_{i=1}^{i=N} m_{i} \overrightarrow{\mathbf{v}}_{i} / m^{\text {total }} \rightarrow \int_{\text {body }} d m \overrightarrow{\mathbf{v}} / m^{\text {total }}$

Torque: $\overrightarrow{\boldsymbol{\tau}}_{S}=\overrightarrow{\mathbf{r}}_{S, P} \times \overrightarrow{\mathbf{F}}_{P}\left|\overrightarrow{\boldsymbol{\tau}}_{s}\right|=\left|\overrightarrow{\mathbf{r}}_{S, P}\right|\left|\overrightarrow{\mathbf{F}}_{P}\right| \sin \theta=r_{\perp} F=r F_{\perp}$

Static Equilibrium: $\overrightarrow{\mathbf{F}}_{\text {total }}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\ldots=\overrightarrow{\mathbf{0}} ; \quad \overrightarrow{\boldsymbol{\tau}}_{S}^{\text {total }}=\overrightarrow{\boldsymbol{\tau}}_{s, 1}+\overrightarrow{\boldsymbol{\tau}}_{s, 2}+\ldots=\overrightarrow{\mathbf{0}}$.
Kinetic Energy: $K=\frac{1}{2} m v^{2} ; \Delta K=\frac{1}{2} m v_{f}{ }^{2}-\frac{1}{2} m v_{0}{ }^{2}$

Work: $W=\int_{r_{0}}^{r_{f}} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}$; Work- Kinetic Energy: $W^{\text {total }}=\Delta K$
Power: $P=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{v}}=d K / d t$
Potential Energy: $\Delta U=-W_{\text {conservative }}=-\int_{A}^{B} \overrightarrow{\mathbf{F}}_{c} \cdot d \overrightarrow{\mathbf{r}}$

Potential Energy Functions with Zero Points:

Constant Gravity: $U(y)=m g y$ with $U\left(y_{0}=0\right)=0$.
Inverse Square Gravity: $U_{\text {gravity }}(\mathrm{r})=-\frac{G m_{1} m_{2}}{r}$ with $U_{\text {gravity }}\left(\mathrm{r}_{0}=\infty\right)=0$.
Hooke's Law: $U_{\text {spring }}(x)=\frac{1}{2} k x^{2}$ with $U_{\text {spring }}(x=0)=0$.
Work- Mechanical Energy: $W_{n c}=\Delta K+\Delta U^{\text {total }}=\Delta E_{\text {mech }}=\left(K_{f}+U_{f}^{\text {total }}\right)-\left(K_{0}+U_{0}^{\text {total }}\right)$

