MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics

Physics 8.01 TEAL
Fall Term 2004

Final Exam: Equation Summary

First Law of Thermodynamics:
$\Delta U \equiv U_{f}-U_{i}=-W_{i \rightarrow f}+Q_{i \rightarrow f}$

Thermistor Calibration:
$R(T)=R_{0} e^{-\alpha T}$
$T=\ln \left(R_{0} / R\right) / \alpha$

Mechanical Equivalent of Heat:
$\left(d E_{\text {mech }} / d t\right)=-k(d Q / d t)$
$(d Q / d t)=c m(d T / d t)$
Power: $P=\tau \omega \quad P=\Delta V I$
Specific Heat:
$c_{\mathrm{H}_{2} \mathrm{O}}=1 \mathrm{cal} / \mathrm{g}-{ }^{0} \mathrm{C}$
$1 \mathrm{cal}=4.186 \mathrm{~J}$
Ideal Gas Law:
$P V=n_{m} R T=N k T$
$P_{\text {pressure }}=(1 / 3) \rho\left(v^{2}\right)_{\text {ave }}$

Equipartition of Energy:

$U=\frac{\text { (\# of degrees of freedom) }}{2} n_{m} R T=\frac{3}{2} n_{m} R T$

Constants:

$k=1.38 \times 10^{-23} J \cdot K^{-1}$
$N_{A}=6.022 \times 10^{23}$ molecules \cdot mole $^{-1}$
$R=N_{A} k=8.31 \mathrm{~J} \cdot \mathrm{~mole}^{-1} \cdot \mathrm{~K}^{-1}$
Pressure:

$$
\begin{aligned}
& P=\frac{d F_{\perp}}{d A} \\
& 1 \text { bar }=10^{5} \mathrm{~Pa} \\
& 1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}
\end{aligned}
$$

Momentum:

$$
\overrightarrow{\mathbf{p}}=m \overrightarrow{\mathbf{v}}, \quad \overrightarrow{\mathbf{F}}_{\text {ave }} \Delta t=\Delta \overrightarrow{\mathbf{p}}, \quad \overrightarrow{\mathbf{F}}_{\text {ext }}^{\text {total }}=\frac{d \overrightarrow{\mathbf{p}}^{\text {total }}}{d t}
$$

Impulse: $\overrightarrow{\mathbf{I}} \equiv \int_{t=0}^{t=t_{f}} \overrightarrow{\mathbf{F}}(t) d t=\Delta \overrightarrow{\mathbf{p}}$
Torque: $\overrightarrow{\boldsymbol{\tau}}_{S}=\overrightarrow{\mathbf{r}}_{S, P} \times \overrightarrow{\mathbf{F}}_{P}$

$$
\left|\overrightarrow{\boldsymbol{\tau}}_{S}\right|=\left|\overrightarrow{\mathbf{r}}_{S, P}\right|\left|\overrightarrow{\mathbf{F}}_{P}\right| \sin \theta=r_{\perp} F=r F_{\perp}
$$

Static Equilibrium:

$\overrightarrow{\mathbf{F}}_{\text {total }}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\ldots=\overrightarrow{\mathbf{0}}$;
$\overrightarrow{\boldsymbol{\tau}}_{S}^{\text {total }}=\overrightarrow{\boldsymbol{\tau}}_{S, 1}+\overrightarrow{\boldsymbol{\tau}}_{S, 2}+\ldots=\overrightarrow{\mathbf{0}}$.
Rotational dynamics: $\overrightarrow{\boldsymbol{\tau}}_{s}^{\text {total }}=\frac{d \overrightarrow{\mathbf{L}}_{S}}{d t}$
Angular Velocity: $\overrightarrow{\boldsymbol{\omega}}=(d \theta / d t) \hat{\mathbf{k}}$
Angular Acceleration: $\overrightarrow{\boldsymbol{\alpha}}=\left(d^{2} \theta / d t^{2}\right) \hat{\mathbf{k}}$

Fixed Axis Rotation: $\overrightarrow{\boldsymbol{\tau}}_{S}=I_{S} \overrightarrow{\boldsymbol{\alpha}}$
$\tau_{S}^{\text {total }}=I_{S} \alpha=I_{S} \frac{d \omega}{d t}$
Moment of Inertia: $I_{S}=\int_{\text {body }} d m\left(r_{\perp}\right)^{2}$
Angular Momentum: $\overrightarrow{\mathbf{L}}_{S}=\overrightarrow{\mathbf{r}}_{S, m} \times m \overrightarrow{\mathbf{v}}$,

$$
\left|\overrightarrow{\mathbf{L}}_{S}\right|=\left|\overrightarrow{\mathbf{r}}_{s, m}\right||m \overrightarrow{\mathbf{v}}| \sin \theta=r_{\perp} p=r p_{\perp}
$$

Rotation and Translation:

$$
\begin{aligned}
& \overrightarrow{\mathbf{L}}_{S}^{\text {total }}=\overrightarrow{\mathbf{L}}_{S}^{\text {orbital }}+\overrightarrow{\mathbf{L}}_{c m}{ }^{\text {spin }}, \\
& \overrightarrow{\mathbf{L}}_{c m}{ }^{\text {spin }}=I_{c m} \overrightarrow{\mathbf{m}}_{c m}^{\text {spin }} \\
& \overrightarrow{\mathbf{L}}_{S}^{\text {roital }}=\overrightarrow{\mathbf{r}}_{S, c m} \times \overrightarrow{\mathbf{p}}^{\text {total }}, \\
& \overrightarrow{\boldsymbol{\tau}}_{s}^{\text {obit }}=\frac{d \overrightarrow{\mathbf{L}}_{S}^{\text {orbit }}}{d t} \overrightarrow{\boldsymbol{\tau}}_{c m}^{\text {spin }}=\frac{d \overrightarrow{\mathbf{L}}_{c m}{ }^{\text {spin }}}{d t}
\end{aligned}
$$

Rotational Energy:

$K_{c m}=\frac{1}{2} I_{c m} \omega_{c m}{ }^{2}$

Rotational Power:

$$
P_{\text {rot }} \equiv \frac{d W_{\text {rot }}}{d t}=\overrightarrow{\boldsymbol{\tau}}_{s} \cdot \overrightarrow{\boldsymbol{\omega}}=\tau_{s} \omega=\tau_{s} \frac{d \theta}{d t}
$$

Angular Impulse:

$$
\overrightarrow{\mathbf{J}}_{s}=\int_{t_{0}}^{t_{f}} \overrightarrow{\boldsymbol{\tau}}_{s} d t=\Delta \overrightarrow{\mathbf{L}}_{s}=\overrightarrow{\mathbf{L}}_{s, f}-\overrightarrow{\mathbf{L}}_{s, 0}
$$

One Dimensional Kinematics:

$\overrightarrow{\mathbf{v}}=d \overrightarrow{\mathbf{r}} / d t, \overrightarrow{\mathbf{a}}=d \overrightarrow{\mathbf{v}} / d t$
$v_{x}(t)-v_{x, 0}=\int_{t^{\prime}=0}^{t^{\prime}=t} a_{x}\left(t^{\prime}\right) d t^{\prime}$
$x(t)-x_{0}=\int_{t^{\prime}=0}^{t^{\prime}=t} v_{x}\left(t^{\prime}\right) d t^{\prime}$

Constant Acceleration:

$x(t)=x_{0}+v_{x, 0}\left(t-t_{0}\right)+\frac{1}{2} a_{x}\left(t-t_{0}\right)^{2}$
$v_{x}(t)=v_{x, 0}+a_{x}\left(t-t_{0}\right)$
$y(t)=y_{0}+v_{y, 0}\left(t-t_{0}\right)+\frac{1}{2} a_{y}\left(t-t_{0}\right)^{2}$
$v_{y}(t)=v_{y, 0}+a_{y}\left(t-t_{0}\right)$
where $x_{0}, v_{x, 0}, y_{0}, v_{y, 0}$ are the initial position and velocities components at $t=t_{0}$

Newton's Second Law:

$\overrightarrow{\mathbf{F}} \equiv m \overrightarrow{\mathbf{a}} \quad \overrightarrow{\mathbf{F}}^{\text {total }}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}$

Newton's Third Law: $\overrightarrow{\mathbf{F}}_{1,2}=-\overrightarrow{\mathbf{F}}_{2,1}$

Force Laws:

Universal Law of Gravity:
$\overrightarrow{\mathbf{F}}_{1,2}=-G \frac{m_{1} m_{2}}{r_{1,2}{ }^{2}} \hat{\mathbf{r}}_{1,2}$, attractive
Gravity near surface of earth:
$\overrightarrow{\mathbf{F}}_{\text {grav }}=m_{\text {grav }} \overrightarrow{\mathbf{g}}$, towards earth
Contact force:
$\overrightarrow{\mathbf{F}}_{\text {contact }}=\overrightarrow{\mathbf{N}}+\overrightarrow{\mathbf{f}}$, depends on applied forces

Static Friction:

$$
0 \leq f_{s} \leq f_{s, \max }=\mu_{s} N
$$

direction depends on applied forces
Kinetic Friction:
$f_{k}=\mu_{k} N$ opposes motion

Hooke's Law:

$$
F=k|\Delta x| \text {, restoring }
$$

Kinematics Circular Motion: arc length: $s=R \theta$;
angular velocity: $\omega=d \theta / d t$
tangential velocity: $v=R \omega$;
angular
acceleration:
$\alpha=d \omega / d t=d^{2} \theta / d t^{2} ;$
tangential acceleration $a_{\theta}=R \alpha$.
Period: $T=\frac{2 \pi R}{v}=\frac{2 \pi}{\omega}$;
frequency: $f=\frac{1}{T}=\frac{\omega}{2 \pi}$,

Radial Acceleration:

$\left|a_{r}\right|=R \omega^{2} ;\left|a_{r}\right|=\frac{v^{2}}{R}$;
$\left|a_{r}\right|=4 \pi^{2} R f^{2} ;\left|a_{r}\right|=\frac{4 \pi^{2} R}{T^{2}}$

Center of Mass:

$$
\overrightarrow{\mathbf{R}}_{c m}=\sum_{i=1}^{i=N} m_{i} \overrightarrow{\mathbf{r}}_{i} / m^{\text {total }} \rightarrow \int_{\text {body }} d m \overrightarrow{\mathbf{r}} / m^{\text {total }}
$$

Velocity of Center of Mass:

$\overrightarrow{\mathbf{V}}_{c m}=\sum_{i=1}^{i=N} m_{i} \overrightarrow{\mathbf{v}}_{i} / m^{\text {total }} \rightarrow \int_{\text {body }} d m \overrightarrow{\mathbf{v}} / m^{\text {total }}$

Torque: $\overrightarrow{\boldsymbol{\tau}}_{S}=\overrightarrow{\mathbf{r}}_{S, P} \times \overrightarrow{\mathbf{F}}_{P}$
$\left|\overrightarrow{\boldsymbol{\tau}}_{S}\right|=\left|\overrightarrow{\mathbf{r}}_{S, P}\right|\left|\overrightarrow{\mathbf{F}}_{P}\right| \sin \theta=r_{\perp} F=r F_{\perp}$

Static Equilibrium:

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}_{\text {total }}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\ldots=\overrightarrow{\mathbf{0}} ; \\
& \overrightarrow{\boldsymbol{\tau}}_{s}^{\text {otal }}=\overrightarrow{\boldsymbol{\tau}}_{s, 1}+\overrightarrow{\boldsymbol{\tau}}_{s, 2}+\ldots=\overrightarrow{\mathbf{0}} .
\end{aligned}
$$

Kinetic Energy:

$K=\frac{1}{2} m v^{2} ; \Delta K=\frac{1}{2} m v_{f}{ }^{2}-\frac{1}{2} m v_{0}{ }^{2}$

Work: $W=\int_{r_{0}}^{r_{f}} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}$;
Work- Kinetic Energy: $W^{\text {total }}=\Delta K$
Power: $P=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{v}}=d K / d t$

Potential

Energy: $\Delta U=-W_{\text {conservative }}=-\int_{A}^{B} \overrightarrow{\mathbf{F}}_{c} \cdot d \overrightarrow{\mathbf{r}}$
Potential Energy Functions with Zero Points:

Constant Gravity:
$U(y)=m g y$ with $U\left(y_{0}=0\right)=0$.

Inverse Square Gravity:
$U_{\text {gravity }}(\mathrm{r})=-\frac{G m_{1} m_{2}}{r}$ with
$U_{\text {gravity }}\left(\mathrm{r}_{0}=\infty\right)=0$.

Hooke's Law:
$U_{\text {spring }}(x)=\frac{1}{2} k x^{2}$ with $U_{\text {spring }}(x=0)=0$.

Work- Mechanical Energy:

$W_{n c}=\Delta K+\Delta U^{\text {total }}=\Delta E_{\text {mech }}$

Planetary Motion:

Energy:

$$
\begin{aligned}
& E=(1 / 2) \mu v^{2}-\left(G m_{1} m_{2} / r\right) \\
& E=(1 / 2)(d r / d t)^{2}+U_{\text {effective }} \\
& U_{\text {effective }}=\left(L^{2} / 2 \mu r^{2}\right)-\left(G m_{1} m_{2} / r\right)
\end{aligned}
$$

Angular Momentum:

$$
L=\mu r v_{\text {tangential }}
$$

Orbit Equation:

$$
r=\left(r_{0} /(1-\varepsilon \cos \theta)\right)
$$

radius of lowest energy circular orbit

$$
r_{0}=\left(L^{2} / \mu G m_{1} m_{2}\right)
$$

eccentricity

$$
\varepsilon=\left(1+\left(2 E L^{2} /\left(\mu\left(G m_{1} m_{2}\right)^{2}\right)\right)\right)^{\frac{1}{2}}
$$

Equal Area Law:

$(d A / d t)=(L / 2 \mu)$

Period Law:

$T^{2}=\frac{4 \pi^{2} a^{3}}{G\left(m_{1}+m_{2}\right)}$

