
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
Physics Department 

Physics 8.01T	 Fall Term 2004 

Experiment 01: Introduction to DataStudio 

Purpose of the Experiment: 
DataStudio, a computer program, and the associated SW750 interface are tools that we will 
use in many of the desktop experiments in 8.01T. This experiment has two goals: 

1. To	 learn how to set up the interface so you can use the computer to make mea
surements. In this case you will use the motion sensor to measure position and velocity. 

2. To learn how to analyze the measurements you have made,	 both by plotting your 
data on graphs so you can see how they look and by using the fitting capabilities of 
DataStudio to find a mathematical function that describes your data and determine 
the function parameters that give the “best” description of the data. 

You will have to make an initial intellectual investment to learn how to use these tools; the 
reward is the ability to quickly and easily make more sophisticated measurements and to be 
able to interpret them more richly. 

There is a web page with examples of how to use DataStudio to do most of the things 
you will need for 8.01T. You will probably find that consulting it will lead to more efficient 
use of your time. Here is the table of contents of that web page. 

1. Starting Up 
2. Entering Data in a Table 
3. Working With Graphs and Displays 

•	 Sizing the Graph Window 
•	 Choosing the Type of Graph 
•	 Selecting Data Points 
•	 Adding/Removing Data Points 
•	 The Graph Smart Tool 
•	 The Graph Slope Tool 
•	 The Graph Statistics Tool 
•	 The Meter Display 
•	 The Scope Display 

4. Making Measurements

Sensors
• 

The Force Sensor 
The Motion Sensor 
The Voltage Sensor 

•	 Voltage Output

Automatic Measurements
• 
Manual Measurements • 

5. Fitting Data

BuiltIn Functions
• 
UserDefined Functions • 

•	 Example: A Collision 

Experiment 01	 1 September 13, 2004




For making measurements today, the sections on the “Motion Sensor” and “Automatic 
Measurement” may be helpful. As this is your first experiment, these notes will give more 
detailed suggestions than you will find for subsequent experiments. Here are the steps to 
start your experiment. 

If your SW750 interface box has a SCSI connection (unfortunately, most of them do), make 
sure the SW750 is turned on and plugged into the computer before you boot the computer; 
if it was not, you will have to reboot after you connect the SW750 and turn it on. 

Start DataStudio and choose the “Create Experiment” option. 

Set the motion sensor switch to the “narrow” range, connect it to the SW150 (yellow plug 
in #1, black plug in #2), and in the “Experiment Setup” window drag the motion sensor 
icon from the sensors list to terminals 1&2 of the picture of the SW750. 

Doubleclick the motion sensor icon where it connects to the SW750. A window will open; 
click the “Measurement” tab to get a window that looks like this. 

Only the Position and Velocity boxes should be checked in the Measurement List. (Click 
a checked box to uncheck it.) If you click on the measurement, in this case the “Position” 
line, to highlight it, you can see the range, units, and accuracy of the sensor. 

Experiment 01 2 September 13, 2004 



Click the “Motion Sensor” tab to get this window.


Set the Trigger Rate to 20. You should hear clicks coming from the sensor, and if you 
stick your hand in front of it, the distance to your hand should appear in the Current 
Distance box. This indicates the sensor is working. You do not need to calibrate it for this 
experiment, but if you want you may move your hand around or put other objects in front 
of the sensor to see what it does. Place the sensor on the metal track pointing towards the 
stop with a black button at the end. The sensor should be at an even 10 cm mark on the 
ruler and between 70 and 100 cm from the stop and it should “see” the stop and report the 
distance to it. Then click “OK” and the window will close. 

Your experiment will require moving your hand in a controlled way between even 10 cm 
marks that are 20 cm and 50 cm from the sensor, a 30 cm peaktopeak motion. Click the 
Options button in the Experiment Setup window to open a window that allows you to 
choose the conditions for starting and stopping the measurement. First click the “Manual 
Sampling” tab and make sure that none of the boxes are checked. Then click the “Delayed 
Start” tab, choose the “Data Measurement” radio button, and set the start condition to 
”Fall Below” 0.55 m. (See the figure on the next page.) Finally, click the “Automatic Stop” 
tab, the “Time” radio button, and type 10 in the Seconds box. 

Experiment 01 3 September 13, 2004




With this setup, after clicking the “Start” button on the main menu you can approach the 
sensor with your hand from greater than 0.55 m away, DataStudio will start to measure the 
distance to your hand 20 times/second when you cross the 0.55 m point, and will continue 
to measure it for 10 s. 

When the measurement stops, you will see entries labeled “Run #1” under the Position and 
Velocity entries in the Data window at the left of your main DataStudio window. Now you 
should plot the results on two graphs. 

To do this, doubleclick the Graph entry in the Displays window, which is below the Data 
window. A window will open asking what data you want to plot on the graph. Click on 
“Position, Ch 1&2(m)” and your hand position will be plotted as a function of time on the 
graph. (If you want to change the color used to plot the data, you can doubleclick the 
Run #1 in the Data window; a large “Data Properties” window will open, and you can 
choose the color under the Appearance tab.) Doubleclick the Graph icon again and make 
another graph on which you can plot the velocity of your hand. 

You can get the same results by dragging “Position, Ch 1&2(m)” from “Data” window 
onto the Graph entry in the “Displays” window and then doing the same with the “Veloc
ity, Ch 1&2(m)” data. 

Experiment 01 4 September 13, 2004 



Future measurements of position and velocity will also be plotted on these graphs. If the 
graphs get too crowded, you can choose which runs to plot from the pulldown menu under 
the Data button on the graph’s toolbar. If there are data runs you do not want to keep, and 
there probably will be many of them, you can remove them completely (and finally) from the 
experiment by clicking them once in the Data window to select them, then use the Delete key. 

What You Should Do for the Experiment 
Here is a measurement that I made for the motion of my hand. 

You can see that I was trying to make the position as a function of time be a square wave. 
The velocity graph gives some kind of indication how well I did. 

In your experiment, try to move your hand so the position is 

1. A square wave. 
2. A triangle wave. 
3. A sine (or cosine) wave. 

Each of the three partners in the experiment should try these. I found the triangle wave 
was the most difficult and the sine wave was the easiest. Now we can have a contest to see 
which team can produce the best sine wave. 

Experiment 01 5 September 13, 2004 



Quantitative Analysis of the Motion 
Here you will use the fitting capability of DataStudio to obtain a quantitative measure of 
how close to a sine wave your hand motion was, and in the process gain some practice 
analysing data. 

First, decide on your best sine wave measurement and plot it on a graph. On the graph, 
choose which five second interval of data you want to be your group’s entry in the contest. 
(It is important for the analysis that you choose precisely a five second interval, as it will 
have 100 points.) Suppose you decide the data between 3.0 and 8.0 s are the ones you want. 
Use the computer’s pointer to drag a rectangle around all of the data points for t < 3.0 s. 
The selected points will be outlined in yellow. 

Click the button with the red X in the graph’s toolbar. The following window will open.


Click OK and the graph will be replaced with one that has the selected data points removed. 
Next, select all of the data points with t > 8.0 s and click the red X. You will get a new 
graph that only has the data from 3.0 to 8.0 s. There will aslo be a new entry in the Data 
window for this reduced data set. 

Then from the pulldown menu under the Fit tab on the graph’s toolbar, choose “Sine Fit”. 
You should get the result shown on the next page. 

Experiment 01 6 September 13, 2004




If you doubleclick the text box in the graph’s window that displays the fit results, a “Curve 
Fit” window will open, giving more information about the fit. You will see that the data 
were fit to � � 

y = A sin 
2π(x − C)

+ D 
B 

where y is the position of the hand and x is the time. You can click the “Properties” button 
in it if you want to change the color for plotting the fit function. 

The fit does not appear to be too bad. To obtain a number that expresses how good or 
bad it is, take the “Root MSE” number, divide by the magnitude of the amplitude “A”, 
and divide that result by 10 (the reason for the division by 10, which is the square root of 
the number of data points you fit, is a bug in DataStudio; see Appendix II of these notes). 
The result for me was 0.076. This is the RMS average deviation from the “Sine Fit” curve 
to my measured hand position (as a fraction of the 13 cm amplitude), and shows my hand 
was within 8%, on average, of a perfect sine wave. How the fitting program chooses the 
parameters A, B, C, and D is discussed in Appendix II. 

This deviation is about 10 times the accuracy that the motion sensor can measure distance, 
so it is almost entirely the result of my hand motion not being a precise sine wave—due to 
variations in the timing and amplitude of the motion. 

When your group has obtained the analogous number for its best five seconds of “sine wave” 
hand motion, use the “Data Input Page” link on the experiments web page to report it, and 
the section instructor will be able to plot a distribution for the class. 

Experiment 01 7 September 13, 2004




� � 

�

Appendix I: Sine Fit Function 
In analyzing measurements from this experiment you will fit the dependent variable y to the 
following function of the independent variable x: 

y = A sin 
2π(x − C)

+ D 
B 

This appendix discusses this function and the four adjustable parameters A, B, C and D 
that it has. If you understand this function, there is no need for you to read this appendix. 
This function is a sine wave of amplitude A added to a constant (background) term D. The 
wavelength of the sine wave along the x direction is B and C is an offset that determines 
where the sine wave passes through zero. Commonly the angle 2πC/B = φ, which is 
measured in radians, is called a phase offset, and 2π/B = k is called the wave vector. Thus 
the function may also be written as 

y = A sin(kx − φ) + D 

The easiest way to see how the parameters change the function is to plot it on graphs for 
some different values of the parameters. 

x

y
A

B

The above graph shows the function when D = φ = 0. (The dotted curve is the same as 
the solid one, but with B four times smaller.) It is easy to imagine that D = 0 simply 
shifts the entire graph up or down and that changing A simply changes the vertical distance 
between the peaks and the valleys. To illustrate the effect of the phase, here is the same 
graph plotted, but with C = B/4 (or φ = π/2). 

x

y
A

BB/4

The effect is to shift the graph to the right by an amount B/4, since it is now necessary to 
have x = B/4 in order for the argument of the sine function to be zero (whereas it was zero 
at x = 0 when C was zero). 

Experiment 01 8 September 13, 2004 



� 

� � 

Appendix II: Fitting Data 
In several of our experiments we will measure some dependent variable y as a function of an 
independent variable x. The independent variable will often be time, while the dependent 
variable may be position, velocity, force, or voltage. In order to interpret and analyse the 
results, it is useful to plot the data on a graph and to find a mathematical function that 
can represent them. This function will usually have several parameters and we would like 
to find the set of parameters that gives the “best” fit of the function to the data. There are 
two main reasons to carry out this fit. 

The first is that we may have a theoretical model that we believe should describe the 
behavior measured; in that case the fit tests how well the model does explain the measured 
results and the fit will enable us to determine the parameters of the model. If we lack a 
theory for the measurements, then finding a function that represents the data may help us 
to develop a theory—the force between magnets in Experiment 03 will be an example. In 
either case, having a function that fits the measurements will allow us to interpolate between 
measured values of the variables and extrapolate to some degree outside the measured range. 

So how should we determine the “best” fit? The 
figure to the right plots a fitting function (the 
solid blue line) and two data points yi(xi) and 
yj (xj ). As will normally be the case, the function 
does not pass through the points, but misses each 
of them by a deviation (also called a “residual”) 
yf it(xi) − yi. As the deviation may be positive or 
negative, the most common procedure is a “least 
squares fit” in which the parameters are chosen to 
minimize the “total square error” (the sum of all 
the residuals squared): 

Φ = [yf it(xi) − yi]
2


i

Now I would like to show a few examples; The mathematical details of how fitting programs 
work are of less importance here. It is more important that you understand what the fitting 
programs do. If properly written, they find the parameters that give the smallest value for 
Φ. All the examples here use the fitting function 

y

x
xi xj

yfit − yi

yfit − yj

yf it(xi) = A sin 
2π(xi − C)

+ D . 
B 

The “data” were calculated from this function 
with D = 0, A = 100, B = 1000, and C = −30, 
unless otherwise stated. Random noise, of peak
topeak amplitude 10 (mean squared value 8.3), 
was added to simulate measured data. On the 
left is a graph of 50 data points and the function 
that fits them best. The variable χ2 is Φ divided 
by the number of points (50) less the number of 
parameters fitted (3), or 47. (χ2 = 9.6 compares 
well with the mean squared noise of 8.3.) 

Experiment 01 9 September 13, 2004 



Here are two more fits.


The graph on the left has the same data as the previous page, but the parameter D is 
allowed to vary in the fit. The uncertainties in the parameters are huge. That is because the 
data are somewhat noisy and they do not extend over a wide enough range in x (compared 
to B) for it to be apparent that B = 1000 ± 500 is silly. The graph on the right has equally 
noisy data, but they extend over a wide enough range in x so there is enough wiggle in y 
to determine B. The lesson is that if you want to determine the parameters of your yf it(x) 
you must have data that extend over a wide enough range to test the form of the function. 
Over a small enough range, many functions look like a slightly curved line and you can’t 
learn much from trying to fit them. 

Now I want to show what may happen if you try to fit a small number of points. 

The graph to the left contains four equally spaced 
data points from the same data set as the graph 
to the right above (B = 300). Even though there 
are only four points, the range in x is enough that 
the fit can determine A, B, and C reasonably well. 
However, the graph below shows a different fit to 
the same four points; this fit has the same χ2 as 
the one to the left, but the parameters are A = 
102 ± 1.5, B = 69.4 ± 0.1, and C = 3.9 ± 0.3. Here 
the points are too widely spaced to rule out the 
extra wiggles when B is several times smaller. 

This situation arises because yf it(x) is periodic

in x and the points are equally spaced. However,

it is just an extreme example of a problem that

can occur more generally. The fitting program

must always start with some initial values for the

parameters. The algorithim will calculate Φ and

vary the parameters to move “downhill” (in a di

rection of decreasing Φ in the multidimensional

parameter space) searching for a minimum.


Experiment 01 10 September 13, 2004




The problem is that Φ may have several minima in the parameter space, and the program 
will likely find the one closest to the initial values. That may not be the best fit in two 
ways: it may not be the lowest minimum and it may not be the one that makes the most 
sense. If you don’t choose reasonable initial values for the parameters, the program may 
not be able to find a minimum at all. 

You may wonder about the ± uncertainties in the fitted parameters that were reported by 
the program I used to do these fits. You can imagine that around the point in parameter 
space where Φ is minimum (the bottom of a “valley”) there are contour lines of constant 
Φ. Any set of parameters that lie inside the contour line where Φ (or χ2) has twice its 
value at the minimum are considered to be essentially equivalent results of the fit. That 
is because, if the parmeters are Gaussian random variables, this contour determines the 
standard deviation of the parameters. The ± changes given by the fit program are those 
that result in doubling χ2 . The DataStudio program we use calculates parameter standard 
deviations in this way. 

It is virtually certain that whatever career you choose, you will sometimes make use of 
least squares fitting to data, also called regression analysis. If Φ is a linear function of 
the parameters, it is linear reqression; if not (as in the case of B and D in the “Sine 
Fit” function), it is nonlinear regression. Many software packages are now available to 
implement regression analysis, and it is important for you to be aware of some of the ways 
they might mislead you. 

Our program DataStudio reports the “Mean Squared Error” which supposed to be Φ 
divided by the number of data points and the “Root MSE” which is its square root. Beware 
that sometimes the program does not do the division and simply reports Φ and its square 
root. If you know the number of data points in the fit, you can correct the result; the Sine 
Fit function we use in this experiment is a culprit. 

The classic book in the field is by Philip R. Bevington, Data Reduction and Error Analysis 
for the Physical Sciences, McGraw Hill, New York, 1969. It is old enough that the code is 
written in fortran, but it is still my favorite. A more recent book is by N. R. Draper and 
H. Smith, Applied Regression Analysis, 3rd edition, John Wiley & Sons, 1998. 

Experiment 01 11 September 13, 2004



