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Experiment 04: Uniform Circular Motion 

Purpose of the Experiment: 
The direct goal of this experiment is to study a“conical pendulum” like the one in your 
homework assignment this week. A fishing sinker (the “mass”) is attached to a rotating 
shaft by a spring and you will adjust the angular velocity of the shaft rotation, and measure 
the radius rm of the circular motion of the mass, calculate the centripetal force, and use 
the results to find the force constant of the spring. To simplify the analysis of your results, 
assume that the mass of the spring can be neglected. 

ω

rm

You should learn at least the following things from this experiment: 

•	 An experimental verification of the force required to produce centripetal acceleration. 

•	 This system has an instability at a critical angular frequency, ωC , for the shaft rotation; 
you will observe the approach to this instability and understand what causes it. 

•	 You will get more experience in analyzing your measurements to find properties you 
may want to know (the spring force constant) and you may find that the spring has a 
property (pretension) that we have not discussed before. 

Setting Up the Experiment: 

The apparatus includes a viewer to facilitate measuring the radius of the mass’s motion, 
rm. It is a white teflon block with a black viewing tube and it slides in a slot in the top 
cover of the apparatus. A small nail protudes down into the slot and should be placed to 
engage the loop of the brass wire that has a LED taped to it; that is so the LED will move 
to illuminate the mass as you try to read its position. (This all works better if the room 
lights are off.) Another nail protrudes into the viewing tube and can be lined up over 
the black stripe around the mass; the same nail also allows you to read the radius on the scale. 
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First you need to know the mass mm of the fishing sinker. The one I used had mm = 9.3 gm, 
but you should ask your instructor for the right mass for your apparatus (most of them seem 
to have a mm = 8.5 gm.) 

Next, attach the mass and spring to the hook on the shaft inside the box. 

Before you turn on the apparatus, you should 
measure r0, which is the value that rm would have 
if the spring were not stretched at all. Stand the 
box on its side and hold the counterweight and the 
shaft so that the spring and mass hang down along 
the scale. Use the viewer to measure the value of 
r0 = rm(ω = 0) when the mass is hanging still; you 
can use r0 to calculate how much the spring stretches 
when it is rotating. 

Next connect the apparatus to its 12V power supply 
via the connector on the side. 

You should replace the side cover to the box 
before you turn on the motor. The lead sinker 
moves at fairly high speed and would give a nasty 
whack to your finger if it were hit by it. Turn on the 
circular motion apparatus and try different speeds 
to see how it behaves. You will use DataStudio to 
measure the rotation period, T , of the mass, and 
from that calculate the angular rotation frequency 
ω = 2π/T . 

rm

As the motor rotates, a magnet in the counterweight triggers a reed relay on the top cover 
of the box and makes a voltage pulse every time the magnet passes under it. 

A voltage sensor should be connected from the ScienceWorkshop 750 interface to the two 
banana jacks that are farthest away from the speed control knob. 

In DataStudio drag a voltage sensor to the appropriate input on the 750 interface; double
click the voltage sensor and set it to low sensitivity and a sample rate of 5000 Hz in the 
window that opens. Set the sampling options (either from the “Experiment” main pull
down menu or the“Options” button of the “Experiment Setup” window) to “none” for both 
automatic start and stop. After that, DataStudio will make measurements continuously 
when you click the start button. To display the voltage pulses, drag the Voltage in the 
“Data” window to the Scope icon in the “Display” window. That will open up a scope 
display. Set it to 1 V/div on the vertical scale and 20 ms/div on the horizontal (time) scale. 
The � symbol to the left of the ms/div label on the xaxis reduces the time to sweep a 
division (increases the sweep rate) and the � symbol does the opposite. Slide up the trigger 
level symbol Δ on the yaxis of the graph to about 0.5V; this will give a more stable scope 
pattern. You should see voltage pulses like this on the scope display after you click the Start 
button. 
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Making Measurements: 

Measure the radius rm(ω) of the mass’s circular motion for three different angular velocities 
to give values of rm between 5 and 10 cm. Allow the speed to stabilize before you make your 
measurement. To find the rotation period on the scope display, you may find it helpful to 
click on the single trace button at the top of the display graph and use the smart tool. For 
each measurement you need to determine rm(ω) and the rotational period T . 

Your goal is to complete a table like the one below for ω = 0 and for three or four values 
of ω > 0. The values for T and rm (shown in bold type) should be entered as you do the 
experiment; all the other values will be calculated from them when you do the analysis. 

T rm ω ΔX mmrmω2 

∞ 4.8 cm 0 s−1 0 m 0 N 

0.095 s 6.0 cm 66.1 s−1 0.012 m 2.44 N 

0.074 s 7.2 cm 84.9 s−1 0.024 m 4.83 N 

0.060 s 10.3 cm 105 s−1 0.055 m 10.5 N 

The table contains the values I measured, but you may have a different spring and fishing 
sinker mass and so may get something quite different. You calculate ω = 2π/T and find 
the amount ΔX the spring stretched using ΔX = rm − r0. 
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A note about gravity: if you have been think
ing as you read this, you should wonder why I 
am not considering the effect of gravity. Because 
of gravity, the spring and mass will hang down 
at some angle θ, as shown exaggerated at the 
right. The spring and mass will actually sweep 
out a conical path inside the box; that’s why this 
apparatus is often called a conical pendulum. rm

rs

θ

If you ignore the mass of the spring and simply analyze a free body diagram of the sinker, 
you will find that tan θ = rmω2/g. For the smallest nonzero rmω in my table, tan θ � 250. 
Thus θ is very close to 90◦ (θ > 89.75◦) and it is a good approximation to ignore gravity 
and pretend the motion is in a horizontal plane. 

This apparatus shows that it is relatively easy to generate centripetal accelerations from 
250 to 1000 times that of gravity in rotating machinery. In a laboratory ultracentrifge, 
accelerations of 700 000 g can be attained with ω � 10 000 s−1 (90 000 rpm). 
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Approaching the Instability: 

To begin this analysis, enter your values for ω in the X (left) column and rm in the Y (right) 
column of a new data table in DataStudio. To create a data table in DataStudio, choose 
“New Empty Data Table” from the main “Experiment” pulldown menu. (If you want to 
give a title to the data and units for the X and Y variables, doubleclick the table entry in 
the “Data” window, and a window will open for you to do this.) 

When your data have been entered, you will get a table that looks like the one above. 
Next, plot them on a graph by dragging the entry from the Data window onto Graph in the 
Displays window. Here is my plot. There is also a fitted line, which I discuss on the next 
page. 

Circular Motion 5 September 29, 2004




You should use DataStudio to fit your rm(ω) data to the expression 

A 
y = 

1 − (x/B)2 

This function is not in DataStudio’s library of functions, so under the “Fit” button of the 
graph’s toolbar, pick the UserDefined Fit option. When you do that, probably nothing 
will happen except a new entry called “UserDefined Fit” will appear in the Data window. 
If you doubleclick it, that should open a window like the one below. If the Automatic 
button is not depressed, click it so that it becomes depressed; that means DataStudio will 
try to find the values of A and B that provide the best fit to your data points. Type 
A/(1(x*x)/(B*B)) into the window to define your function and click the Accept button. 
DataStudio will probably complain that it could not find a fit; that is a sign the program 
needs some help from you. Type some reasonable values into the Initial Guess fields that 
have opened up (Good guesses would be A = 5 cm and B = 150 s−1) and click Accept again. 
The fitted parameter values should appear in the window, the fit curve should be plotted 
on your graph and a text box should open on the graph that also lists the fit results. 

As you can see for my data, the above expression is a very good fit. Let’s see why I expected 
that. We know that the centripetal force is given by 

Fc = mm rm ω
2 

while the force exerted by the spring, where I use the symbol r0 for rm(ω = 0), is 

Fspring = (rm − r0)k 
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If I equate the two forces and solve the resulting equation for rm I find 

r0 
rm = 

1 −mmω2/k 

This is the expression I fit above; you can see that the parameter A should be the quantity 
you measured for r0 = rm(ω = 0). You can also see that the mass will “escape” (rm →∞) 
when 

ω = ωC = k/m 

You can understand why this instability occurs if you differentiate the two force equations. 

dFc 
= mm ω

2 

drm 

and 

dFspring 
= k . 

drm 

For ω < k/m the centripetal force required to keep the mass in a circular orbit grows 
more slowly with rm than the restoring force provided by the spring does; the spring can 
always stretch a bit more to provide enough force to hold the mass in its circular path. For 

k/m, the opposite is true and stretching the spring—so long as it obeys Hooke’s law— ω ≥
only makes the situation worse. Something catastrophic will happen. To prevent damage, 
the power supply in your apparatus should have been adjusted to keep ω < ωc. If it was 
not, you may have been able to turn it up enough to reach ωc. That usually manifests itself 
by a loud clattering noise when the sinker hits the walls of the plastic box. 

This instability shows up in some other circumstances. You may have experienced it while 
blowing up party balloons by mouth; it is especially obvious with long skinny balloons. 
In that case, the stretched rubber provides a restoring force (analogous to the spring) to 
counterbalance the air pressure in the balloon. Above a critical pressure, the force required 
to contain the pressure increases more rapidly with the balloon’s radius than the rubber 
restoring force does. The balloon does not usually pop, however; instead it suddenly inflates 
to a larger radius and remains whole because the highly stretched rubber provides an even 
greater restoring force (it has a larger rate constant). The balloon does not obey Hooke’s 
law. 

An analogous instability can occur in arteries weakened by disease and often leads to an 
aneurism, often fatal when the artery ruptures. 

If you want a challenge, see if you can derive an equation for the radius as a function of 
pressure for a balloon or artery (a cylindrical tube) that follows Hooke’s law. 
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Finding the Spring Rate Constant: 

Note: you don’t have to do this fit in order to turn in your report for this experiment. 
However, it is required for a problem on your next problem set (which is attached as the 
last page of this document). There should be enough time to do the fit in class and you can 
fill in the relevant numbers on the last page. 

The springs supplied for this experiment have been wound to have a “pretension.” That 
means a certain force F0 must be applied to the spring before the spring will begin to stretch, 
and the force law is given by Fspring = F0 + kΔX. (In 8.01T we will usually call k the spring 
force constant, but if you look at the literature of companies that manufacture springs, they 
use the term “rate constant”.) When you analyze your results to find the rate constant k 
you will need to use this expression: 

Fspring = F0 + kΔX . 

For example, from my table I need to satisfy the equations. 

2.44 = F0 + 0.012k (1) 

4.83 = F0 + 0.024k (2) 

10.5 = F0 + 0.055k (3) 

Here are three equations and two unknowns, so the coefficients F0 and k that I want to find 
are overdetermined; a consistent set of values does not likely exist. 

Whenever you have more measurements than adjustable parameters, which is always a 
desirable situation, you need to find the parameters F0 and k that represent some kind of 
“best fit” compromise. 

You should type the numbers into a DataStudio table, plot them, and use the program’s 
Linear Fit function. Create a new table as you did for the rm and ω data. 

Type your mmrmω2 values into the Y axis 
(right) column and your ΔX values into 
the Xaxis (left) column. When the ta
ble is complete, plot the data by drag
ging them from the “Data” window to the 
Graph icon in the “Displays” window. 

You can also export the data as an ASCII 
text file (e.g., to the desktop of your com
puter) which you could send to yourself by 
email if you want a machine-readable file for 
later analysis with Xess. (With only three points, 

I'd use a pencil and paper and type them into Xess 
by hand.) 
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Select the Fit tab on the graph toolbar and ask DataStudio to do a linear fit. Here is what 
I obtained. 

The results are F0 = 0.27 ± 0.13 N and k = 187 ± 4 N/m. As rm could only be measured 
to two significant figures, I should quote k only to two significant figures as well. The 
pretension comes from subtracting two almost equal numbers and could well be zero. (A 
negative pretension would make no sense because ΔX is defined to be the distance the 
spring is stretched from the length it has when the applied force is zero.) You can measure 
the period T rather accurately, so the main source of error is rm. 
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Part of Problem Set 04 

Section and Group:


Your Name:


You may work together as a group to solve this problem, but each group member should 
turn in a copy of this answer with problem set 04. If you like, just fill in the information 
above, complete this page, and attach it to your homework solutions. 

Fill out the following table for ω = 0 and at least three other values of ω. 

T rm ΔX ω mmrmω2 

∞ 0 m 0 s−1 0 N 

1. What was your spring’s force constant from the fit ?	 How does it compare with the 
value you calculated from ωc ? 

2. What was your spring’s pretension? 

3. Suppose the mass of the spring were to be included in your data analysis. (When I 
did this, I found it to be at most a 10% effect.) Would this mean you would find a 
larger or smaller value for k ? (Explain.) 
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