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Introductory Error Analysis 

Linear Regression: Least-Squares Fits 

It is common to try to fit known curves to a set of data points {(xi, yi)}
n 
i=1. 

Indeed, you have already done this using DataStudio several times. 

If the desired fit is to y as a linear funcion of x, the “best” fit, that which 

minimized the total error (as described below) is y = a + b x, where  

( yi) x2 − ( 
� 
xi) (  xi yi) n ( xi yi) − ( xi) (  yi)i a = � 

2 2n ( xi ) − ( 
� 
xi)
2 , b = 

n ( 
� 
xi ) − ( 

� 
xi)
2 , 

where all sums are from i = 1  to  n. These expressions are often written more 

compactly as 
〈y〉〈x2〉 − 〈x〉〈xy〉 〈xy〉 − 〈x〉〈y〉 

a = 
〈x2〉 − 〈x〉2 

, b = 
〈x2〉 − 〈x〉2 

, 

1where if g is any function of x and y, 〈g〉 = 
n gi. 

These calculations are simple but tedious, which makes them good candidates 

for either a calculator or computer. Any scientific calculator will have a linear 

regression feature (but possibly with different names for the slope and intercept). 

As we have seen with DataStudio, fitting a “best” straight line is quick and easy. 

If DataStudio is not available, any spreadsheet program should be able to do 

the calculations for you. What follows is a short guide to using Xess, the default 

spreadsheet program on server at MIT. 

When the window appears, start entering data. It’s recommended that you enter 

the values of xi in one column and the values of yi in an adjacent column. If you have 

exported your data to a “tab-separated value” file (one with a .tsv extension), you 

can import your data directly into your Xess session; go to “File” on the menu bar. 

If, for instance for Experiment 4, Circular motion, your data consists of the 

measures values of rm and the calculated values of ω, you can manipulate the data 

to find ∆X and F . If your values for rm are in Column B, starting with cell B1, 

click on cell C1 and in the edit line enter 
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=B1-4.1 

followed by a return (my unstretched spring length was 4.1 cm). Click again in 

cell C1 and copy the formula, either from “Edit” on the menu bar or Control-f. 

Then drag into the rest of the cells in Column C where you want the formual 

applied. What you see is the value of the cell immediately to the left minus 4.1. 

The terminology is that the “B1” is a “relative” attribute. 

Similarly, click on cell D1 and enter 

=C1*8.6*A1*A1/1000 

followed by a return. (This assumes that the values for ω are in Column A.) I used 

a mass  of  8.6 gm, and the division by 1000 will give a force in newtons. 

To plot the calculated force as a function of the extension, highlight Columns 

C and D, go to “Graph” on the menu, select “New Graph” and “Scatter Graph” 

to get the plot. Adjust the features as desired using “Edit” and “Options” on the 

graph window. 

To find the best-fit line, click in an empty cell and enter 

=@LINCOEF(C1..C5,D1..D5) 

to display the slope (a) and intercept (b). (I had four non-zero measurements, so I 

needed to give the range in the columns to include all five points). 

To graph this line, go to another empty cell and enter 

=@LINFIT(C1..C5,D1..D5) 

to calculate a xi +b for each value in Column C. Of course, you could use the best-fit 

parameters to do this yourself, but since it’s a built-in function, we’ll use it. 

To graph this line on the same graph as the calculated force vs displacement 

graph, go to “Edit” “Data Sets” on the graph window. At the top, you’ll see a slide 

bar under “1”. Either move the slide to the right or click to the right of the bar to 

bring up Data Set 2. In the “X Data” field enter C1..C5 and in “Y Data” enter 

F1..F5 (or the corresponding cells where you put the LINFIT values). For the best 

display, select “Line” for “Segment Type” and “None” for “Marker.” 

In Data Studio you may have noticed that when you make a linear fit to data, 

the window describing the fit has an entry for “r”, the correlation coefficient. Of  

course Xess can do this. In an empty cell enter =@CORR(C1..C5,D1..D5). The  

calculation of the correlation coefficient is a bit messy, but the spreadsheet doesn’t 

mind at all. 
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Determining the Best-Fit parameters 

Suppose you have plotted n data points (x1, y1), (x2, y2), . . . , (xn, yn), and 

you suspect a linear relation between the values of x and y; how can you determine 

what linear relation best fits your data? 

The most enlightening way is to plot the data and fit a line by eye. This line 

is characterized by a slope and an intercept that can be read off of the graph. 

A more rigorous way is to define what we mean by the “best” straight line. 

Suppose a candidate line is given by y = a+ b x. Then, each xi gives a value for y. 

This will in general not be yi (if it were, then all of the data would fit a line exactly), 

so denote the difference between yi and its predicted value by εi = yi − (a + bxi) 

Here, εi is the “error in yi.” Then, consider the sum of the squares of these errors 

(we need to square the errors before adding since a negative error is as bad as a 

positive one, and we don’t want them to cancel). This sum, denoted by Φ, is the 

quantity we wish to minimize; we want to find the values of a and b that give us 

the Least Squares 

So, for a trial a and b, and  a  given  set  of  n data points, we have 

n 

S = (yi − (a+ b xi))
2 
. 

i=1 

To make things easier, we’ll introduce some compact notation. For any function g 

of x and y, let  

n n � 1 �1 
gi ≡ g(xi, yi) ≡ 〈g〉. 

n n 
i=1 i=1 

In this notation, then, 

Φ
= 〈y 2〉+ a 2 + b2〈x 2〉+ 2  a b 〈x〉 − 2 a 〈y〉 − 2 b 〈xy〉. 

n 

(Note that 〈x〉〈y〉 �= 〈xy〉; the product of a sum is not the sum of the products, but 
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you knew that.) Some rearrangement and a bit of razzle-dazzle yields


Φ
= 〈y 2〉 − 〈y〉2 

n 
+ a 2 + 2  a (b〈x〉 − 〈y〉) + (b〈x〉 − 〈y〉)2 

2 
2
� 

+ b2 
� 
〈x 2〉 − 〈x〉 + 2  b (〈x〉〈y〉 − 〈xy〉) +  

(〈x〉〈y〉 − 〈xy〉)
2〈x2〉 − 〈x〉

2
(〈x〉〈y〉 − 〈xy〉)

− 
2〈x2〉 − 〈x〉

(〈x〉〈y〉 − 〈xy〉)2 

= 〈y 2〉 − 〈y〉2 − 
2〈x2〉 − 〈x〉� �2 

〈x〉〈y〉 − 〈xy〉 
+ (a + (b〈x〉 − 〈y〉))2 

+ b 
� 
〈x2〉 − 〈x〉2 + � . 

2〈x2〉 − 〈x〉

This is a fancier version of completing the square, as we used in minimizing Vc to 

find the arithmetic mean as the “Best” average of a sample. Clearly, much hindsight 

was used to obtain the result in this form. What was done was to isolate the terms 

containing a, completing the square with those terms by adding (b〈x〉− 〈y〉)2, then  

completing the square with the b-terms. 

The error will be minimized when both terms in parentheses are as small as 

possible in absolute value; that is, when they vanish. The “best” line is then that 

for which 

〈xy〉 − 〈x〉〈y〉 〈y〉〈x2〉 − 〈x〉〈xy〉 
b = a = 〈y〉 − b〈x〉 = .

2〈x2〉 − 〈x〉2 〈x2〉 − 〈x〉

∂ΦThe same result can be obtained from calculus by setting ∂Φ and 
∂b to zero and 

∂a 

solving the two linear equations for a and b. 

Many calculators have this capacity, making determination of a and b wonder-

fully simple. If you’re not sure how to do such things on your calculator, let us 

know (but please bring the instruction booklet). 

The best way of all is to plot your points and use linear regression. This way, 

you can see if there are any points that are clearly wrong (but never discard a data 

point without good reason), or if the data even suggest a linear fit at all. Also, with 

an eyeball fit you can obtain an estimate of the error in a or b by seeing what range 

of a and b correspond to the extreme “reasonable” (as opposed to “best fit”) lines 

to your data. 
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