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Physics 8.01T	 Fall Term 2004 

Experiment 08: Physical Pendulum 

Purpose of the Experiment: 

In this experiment you investigate rigid body rotational 
dynamics by studying a pendulum made of a rigid body. 
This is called a “physical pendulum” to distinguish it from 
the “ideal pendulum” which consists of a point mass on a 
string. You will use the DataStudio motion sensor to mea
sure the period of the pendulum. This will give you practice in 

•	 calculating moments of inertia, 
•	 calculating the period of a physical pendulum, and 
•	 possibly determining how good the approximation 

sin θ = θ (made in deriving the equation of motion for 
the pendulum) is. 
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Setting Up the Experiment: 

The pendulum is made by hanging a metal ruler over a 
in. dia. rod clamped to the vertical rod of a support stand. 

As the ruler is 1.0 m long (longer than the support rod for 
the stand), place the rod in the hole near the apex of the tri
angular base and locate the stand so the ruler can hang over 
the edge of the table—as shown in the photo to the left. The 
motion sensor should be placed over the rod so that the ruler 
is four to six inches front of it when hanging at rest. Set the 
motion sensor on its narrow beam. When the ruler is in front 
of the motion sensor, it will report a distance 0.10 to 0.15 m; 
when it is not, a larger distance will be reported. The motion 
sensor should be set to a sample rate of 120; that should let 
you measure the pendulum period to an accuracy of ±0.01 s. 
Note: when the motion sensor tries to detect a distant tar
get (e.g., with the ruler out of the way) it will sample at a 
much lower rate. To time the pendulum period accurately, 
you should place a target (such as the back of a chair) about 
0.3 to 0.4 m away—for the motion sensor to detect when the 
ruler has moved aside. 

You should set up DataStudio with Automatic Start “None” and Delayed Stop after 10 s.

(The period of the pendulum is about 1.6 s.) Set the motion sensor to measure only position

and make a graph to plot position vs. time.

For each measurement pull the bottom end of ruler aside by the desired distance (between
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10 and 50 cm), then release the ruler and click the DataStudio start button at about the 
same time. When the ruler is in the ultrasound beam from the motion sensor, it will 
measure the distance to the ruler, about 10 to 15 cm. When it is to the side of the beam, 
the motion sensor will measure the distance to the chair you placed in the beam, about 
40 cm. You do not care about the distance to the ruler and only want to detect the times 
when the ruler passes in front of the sensor. You should be aware that the motion sensor 
can give weird results for the distance to objects closer than 15 cm. If you seem to be 
getting strange behavior, try sliding the ruler out on the rod to get it farther away from 
the motion sensor. 

The graph above has my results with the graph scaled to show only the first four seconds. 
As adjacent pulses correspond to the ruler swinging in opposite directions, to determine the 
period of the pendulum, you must find the time between two pulses that have one pulse 
in between them. Choose a point that is easy to identify (on my graph the point when 
the motion sensor first detects the ruler seems to be sharply defined) and use the Smart 
Tool on the graph—make sure it “locks on” to the data points—to find the time when this 
occurs. 
cursor becomes a hand with a small triangle near the index finger 

Drag this cursor to the corresponding point on the graph one period later and release it. 
DataStudio will calculate and display the time difference between the two points, which is 
the period of the pendulum. As you can see on my graph, it is 1.62 s. 

. 
If you position the cursor close to the point the Smart Tool is locked on to, the 

You should measure the period with the ruler started 10, 25, and 50 cm to the side of its 
vertical equilibrium position; these displacements do not need to be very accurate, so you 
may guess them. They correspond to angular amplitudes θ0 of about 0.10, 0.25, and 0.52 
radians. Complete a table like this one: 
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Displacement θ0 Period 

0.10 m 0.10 

0.25 m 0.25 

0.50 m 0.52 

Next, try modifying the moment of inertia of the pendulum and observing how its period

changes. Do that by using a 1
1 

4 in. binder clip to attach a 50 gm brass weight to the ruler.

The mass of the clip is 8.6 gm. The small hole in the center of the weight can be used to 
identify fairly accurately where the center of mass of the weight is located. 

You should measure the period and report the results for the three positions in the table 
below. For convenience, you may carry out these measurements with an initial ruler 
displacement of 20 cm; it does not matter much what you choose. The “position” in the 
table is the distance from the top end of the ruler where the center of mass of the extra 
weight and clip is located. The position 0.50 m is where the center of mass of the ruler is; 
the mass of the ruler is 0.159 kg. 

Displacement Weight Position Period 

0.20 m 58.6 gm 0.25 m 

0.20 m 58.6 gm 0.50 m 

0.20 m 58.6 gm 0.90 m 
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Appendix: Theoretical Discussions 

lθ

mg

mg sinθ

1. The Ideal Pendulum 
For the ideal pendulum the tangential restoring force is 
mg sin θ and the displacement is lθ, giving rise to the 
equation of motion (F = ma) 

d2θ 
ml + mg sin θ = 0 

dt2 

with the approximation sin θ ≈ θ this becomes 

d2θ 
ml + mgθ = 0 

dt2 

This is the equation of motion for a harmonic oscillator 
whose angular frequency ω0 is g/l. Thus the period of 
oscillation is 

2π � 
T = = 2π l/g . 

ω0 

Note: ω0 is the angular frequency of oscillation of the 
pendulum; it is not dθ/dt. It can be confusing that the 
same greek letter is commonly used for both quantities. 

2. The Physical Pendulum 

P
θ

CM

mg
mgsinθ

l
The physical pendulum is a rigid body that 
rotates about an axis, shown as P in the fig
ure to the left. 

Its equation of motion will be τ = Iα, where 
I is the moment of inerta about the axis of ro
tation. Let us suppose that the distance from 
the axis P to the center of mass CM is l. Then 
the restoring torque will be mgl sin θ, which 
leads to the equation of motion 

d2θ 
I + mgl sin θ = 0 

dt2 

with the approximation sin θ ≈ θ this becomes 

d2θ 
I + mglθ = 0 

dt2 
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This is the equation of motion for a harmonic oscillator whose angular frequency ω0 is 
mgl/I. Thus the period of oscillation is 

� I2π � 
T = = 2π I/(mgl) = 2π l/g . 

ω0 ml2 

3. The Ruler Pendulum 
You need to know the moment of inertia of the ruler about an axis through the hole near 
one end. Suppose the ruler has a length b and a width a. The textbook (Table 9.2) gives 
an expression for its moment of inertia about an axis that passes through the CM and is 
perpendicular to the flat of the ruler as 

m 
ICM = (a 2 + b2) . 

12 

If the distance from the CM to the pivot point P is l, we can use the parallel axis theorem 
(section 9.5 in the text) to find the moment of inertia about P as 

m 
IP = (a 2 + b2) + ml2 

12 

which gives the period of the ruler pendulum 

a2 + b2 + 12l2 � a2 + b2 

T = 2π = 2π l/g 1 + = 1.622 s 
12gl 12l2 

using the dimensions of the ruler: a = 0.028 m, b = 1.000 m, and l = 0.479 m. (The mass of 
the ruler is 0.159 kg.) 

4. Changing the Moment of Inertia 

To calculate the period of the pendulum when a weight is clipped to it, you must know the 
moment of inertia of the ruler with the weight attached to it. Suppose the weight and the 
clip are point masses and their centers of mass are both located at position p on the ruler. 
As the hole is 2.1 cm from the top end of the ruler, the distance from the pivot to the CM 
of the weight will be d = p − 0.021 m. The moment of inertia (about P ) of the ruler with 
the weight attached will then be 

IP = 
mr 

(a 2 + b2) + mr l
2 + mcd

2 + mw d
2 

12 

where mr , mc and mw are the masses of the ruler, the clip and the weight, respectively. The 
restoring torque that tries to return the pendulum to a vertical position will be 

τ = (mr l + mcd + mw d)g sin θ ≈ (mr l + mcd + mw d)gθ . 

You can use these expressions to calculate the period of oscillation. As part of the homework 
assignment due November 16, you should derive an expression for the period of the pendulum 
with the weight attached, evaluate it, and compare with the measured results you reported 
in the table at the top of page 3. (The mass of the ruler is 0.159 kg.) 
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A Note on the sin θ = θ Approximation.
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The figure above plots the numerical solutions to the exact pendulum equation of motion 
for initial amplitudes of θ0 = 0.10 and θ0 = 0.45 radians. The sin θ = θ approximation is 
very good when θ0 = 0.10, but the numerical solution shows the actual period is about 0.8% 
longer than the approximation would predict when θ0 = 0.45. This difference (about 0.013 s 
for your experiment) is about the same as the experimental error, but you may detect a 
slightly longer period for your largest amplitude oscillations. 

The first order analytic correction to the sin θ = θ approximation gives a period 

T (θ0) = T (0)[1 + θ2 
0 /16] 

where θ0 is the angular amplitude (in radians) of the pendulum motion and T (0) is the 
period assuming the approximation is exact. (This is discussed in the Course Notes on 
Rotational Dynamics.) 

Experiment 08 6 November 10, 2004




� 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Physics Department


Physics 8.01T Fall Term 2004


Part of Problem Set 10 

Section and Group: 

Your Name: 

Part One: Ruler Pendulum 
The ruler has a mass mr = 0.159 kg, a width a = 0.028 m, a length b = 1.00 m, and the 
distance from the pivot point to the center of mass is l = 0.479 m. Enter your measured 
period into the Tmeas column in the table below and calculate the other entries using the 
formulas 

Tideal = 2π l/g 

and 

Ttheory = 2π 
� 

l/g 

� 
I 

ml2 

� 

1 + 
θ2 
0 

16 

� 

with g = 9.805 ms−2 . 

θ0 Tmeas Ttheory Tideal 

0.10 

0.52 

Part Two: Added Mass 
Consider the effect of a brass weight clipped to the ruler. The weight is shaped like a 
washer with an outer radius ro = 0.016 m and an inner radius ri = 0.002 m; it has a mass 
mw = 0.050 kg. It is clipped to the ruler so that the center of the inner hole is over the 
0.500 m mark on the ruler, or l = 0.479 m from the pivot point. The clip has a mass of 
mc = 0.0086 kg and you may assume its center of mass is also over the 0.500 m mark on the 
ruler. If you treat the washer and the clip as point masses, then, as was discussed in the 
notes for Experiment 08, the combined unit has a moment of inertia about the pivot point 

IP = 
mr 

(a 2 + b2) + mr l
2 + (mc + mw)d2 

12 

where d = l for this situation. The restoring torque that tries to return the pendulum to a 
vertical position will be 

τ = (mr l + mcd + mw d)g sin θ ≈ (mr l + mcd + mw d)gθ . 
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1. Use these two	 expressions to derive an equation of motion for the pendulum and 
calculate its period T in the small amplitude (sin θ = θ) approximation. Express your 
answer algebraically in terms of the variables a, b, d, l, mr, mw, mc and g. 

2. Evaluate the result numerically and compare with the value you measured in your 
experiment. 

2. If you treat the brass washer as a point mass, its moment of inertia about the pivot 
point is Iw,P = mwl2 . However the washer also has a moment of inertia about its 
center of mass that is given by Iw =
 1 

2mw(r2 
i 
2). When this is taken into account, − ro 

what is the new (and more accurate) expression for Iw,P ? How many percent does 
l2 ?this differ from the simpler expression Iw,P = mw
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Solution to the Exact Equation 
Solve the equation 

d2θ g 
= sin θ 

dt2 
−

l 

with an amplitude θ0, which gives a boundary condition ω = dθ/dt = 0 when θ = θ0. Make 
the substitution ω = dθ/dt; then 

d2θ dω dω dθ dω 
= = = ω 

dt2 dt dθ dt dθ 

and the equation becomes 

dω g
ω = sin θ or ω dω = −(g/l) sin θ dθ . 

dθ 
−

l 

Integrating gives 

ω2 = (2g/l) cos θ + C0 . 

The boundary condition requires C0 = −(2g/l) cos θ0. Replacing ω by dθ/dt gives the 
equation 

dθ 2g 
= dt√

cos θ − cos θ0 l 

Using the identity 

cos θ = 1 − 2 sin2(θ/2) 

the equation may be written as 

dθ g 2 dα � = 2 dt = �

sin2(θ0/2) − sin2(θ/2) l 1 − k2 sin2 α


where k = sin(θ0/2) and sin α = (1/k) sin(θ/2). This equation may be integrated to give 

1 
2

g−
1 − k2 sin2 α dα = t + C1 . 

l


The integral on the left is an elliptic integral of the first kind, and cannot be evaluated 
analytically. However if k is small, we may expand the square root using the binomial 
theorem 

k2 

sin2 α + · · · k2 g
1 + dα = α + (α − sin α cos α) = t + C1 . 

2 4 l 
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Suppose the boundary condition when t = 0 is θ = α = 0; this requires C1 = 0. Then 

g k2 

t = α + (α − sin α cos α) . 
l 4


After period (t = T/4) one will have θ = θ0 or α = π/2. Thus the period is


k2 l θ2 

T = 2π
l 

1 + = 2π 1 + 0 

g 4 g 16 
+ · · · 

1

4
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