MIT 8.01T Physics I

Experiment 3: Modeling Forces

Goal

Use DataStudio to plot and analyze the force that two magnets exert on one another as a function of the distance between them.

Use linear, semi-log, and log-log graphs to gain some insight into how the force varies with separation.

Find a mathematical function that describes this force, a "force law".

Measuring the Gap:

Measure heights h_{1} and h_{2} with your ruler, and subtract them. (h_{1} will be constant.)
The two magnets stuck together weigh 6.0 pennies.
The plastic coin holder weighs 4.0 pennies.

Enter the gap (in mm) and the total weight (in pennies) into a table in DataStudio.

The gap goes in the X (left) column of the table.

Starting DataStudio:

Choose the "Enter Data" option.

Making a Table I:

- A table and a graph will appear. Close the graph window (removes it). Drag the table borders to make it smaller.
-Click the "Summary" button to open the "Data" and "Displays" windows.
-Double-click "Editable
Data" in the Data window.
This opens a "Data
Properties" window...

Making a Table II:

Data Properties

```
General Numeric Appearance 
```

```
General Numeric Appearance 
```

Measurement Name:
Force vs. Gap
Description:
Data entered or imported.

Variable Name:

-Choose a title for the data set.
-Pick names and units of the X and Y variables.

Making a Table III:

\%DataStudio

File Edit Experiment Window Display Help

S Data
\square Force vs. Gap (pennies)
$\mathbf{~} \quad$ Data

-Type in your measurements, gap in the left (X) column and force in the right (Y) column.
-To plot them, drag the "Force vs.Gap" entry in the Data window onto "Graph" in the Displays window.

Semi-log Graph:

-Click the "Calculate" button.
\cdot In the definition window type LogF=ln(y).
-Under the "Variables" pull-down menu choose "Data Measurement" and then your data in the yellow window that opens.
-After you click the Accept button, there should be a new entry "LogF=ln(y)" in the Data window; it will have $\ln ($ force $)$ as Y and gap as X.

- Make a graph of $\ln ($ force $)$ vs. gap by dragging this entry onto the Graph entry in the Displays window.
-Use the Linear Fit function to see if it is a straight line and find the exponent from the slope.

Semi-log Graph:

Log-log Graph:

-Make a new empty data table by clicking the "New Data" button.
-Type your measured values of the gap into both columns (X and Y) of the table.
-Use the calculate button with $\operatorname{LogG}=\ln (\mathrm{y})$ to get a new data set with $\ln (g a p)$ as a function of gap in the Data window.

- Make a graph of $\ln ($ force $)$ vs. $\ln ($ gap $)$ by plotting $\ln ($ force) vs. gap and dragging the LogG data set onto the X axis of the graph,.
-Use the graph’s Slope Tool to fill in the table in your report, part (b).

Log-log Graph:

Clearly not linear; use the Smart Tool to see how slope changes.

Alternate Fit:

Return to your original linear force vs. gap graph. Carry out a User-Defined fit to the function:

$$
A * 9070 *(x+B) /\left(5000+\left(500+(x+B)^{\wedge} 2\right) *(x+B)^{\wedge} 2\right)
$$

Note the Root MSE value and compare with the exponential. (Two fits are not considered significantly different unless the smaller Root MSE is 70\% or less of the larger one.)

The origin of this function is discussed it the appendix to the write up for the experiment.

Alternate Fit:

Exponential Fit:

