

MIT 8.01T Physics I

Experiment 5B: Friction

Goal

To investigate the friction of a string wrapped around a cylinder, observe that it increases exponentially, and to measure the friction coefficient μ .

(A theoretical expression is derived in the appendix to the write up for the experiment.)

Starting *DataStudio*:

Create a new experiment. Plug a force sensor into the 750 and drag it to the input in the Setup window.

Double-click the Force Sensor icon.

Force Sensor:

Sensor Properties			
General Measurement Calibration			
Force Sensor			
Model: CI-6537, CI-6746			
Sample Rate 10 Hz • Fast (> 1 Hz) Slow (< 1 Hz) Slow Force Changes (Spring Tests) Fast Force Changes (Collisions)			
OK Cancel Help			

Sensor Properties			×
General Measurement	Calibration		
Current Reading Voltage: -0.207 Value: -1.29	High Point Voltage: Value: 50.00	Low Point Voltage: -8.000 Value: -50.00 Take Beading	
Name: Force, Ch A (N) Bance:		Sensitivity:]
-8.00 to 8	.00 N	0.01	
l	OK	Cancel Help	

Set it for 10 samples/s and low sensitivity.

Sampling Options:

Sampling Options		×
Manual Sampling	Delayed Start Automatic Stop	
☐ Keep data v ☐ Enter a ki ☐ Promp	values only when commanded. eyboard value when data is kept. ot for a value.	

No boxes checked.

Sampling Options	Sampling Options
Manual Sampling Delayed Start Automatic Stop	Manual Sampling Delayed Start Automatic Stop
 None Time 10 Seconds Data Measurement Force, Ch A (N) Is Above 0 N Keep data prior to start condition. 0.000 Seconds Start Signal Generator before start condition. 	 None Time 10 Seconds Data Measurement Force, Ch A (N) Is Above 0 N

No delayed start.

Stop after 10 s.

Set Up :

Choose large or small cylinder.

Both kinds at each table.

100 gm brass weight + 5 gm holder = 1.03 N.

Small Cylinder

Large Cylinder

Measuring technique:

Tare the force sensor.

Ensure string passes over pulley before all measurements.

Do not wrap the string over itself. Wrap string 2 ¹/₄ turns around cylinder.

Increase ccw torque on cylinder smoothly to the slipping point, then turn slowly for 1 or 2 seconds. Practice this, so you get 1 or 2 peaks of the force in 10 s, then record the force with *DataStudio*.

Measuring the Friction:

Choose the largest <u>magnitude</u> of Force as the friction. Use the Smart Tool or the Statistics (Σ) Tool.

Recording the Friction:

Measure the friction for the string wrapped ¹/₄, 1¹/₄, 2¹/₄, 3¹/₄ and 4¹/₄ turns. Express these in radians and type them as the independent variable, along with the friction force as the dependent variable, into a table in DataStudio.

Include the force of 1.03 N when the wrap angle is 0 as an entry in your table.

Plot the table on a graph and carry out a User-Defined Fit with the function $1.03 * \exp(-C*x)$.

Fit Result (large cylinder):

Fit Result (small cylinder):

