

MIT 8.01T Physics I

Experiment 8: Physical Pendulum

Set Up :

Suspend 1m ruler so it can swing over edge of table. Measure the period of oscillation with the *DataStudio* motion sensor. Set motion sensor on narrow beam, aim it to just miss support rod and hit ruler about 25 cm away. Place a chair about 40-50 cm from motion sensor to intercept ultrasound beam when ruler swings out of beam.

Goal

To investigate oscillation of a real (physical) pendulum and compare with an ideal (point mass) pendulum.

Practice calculating moments of inertia, using them, and solving $\tau = I \alpha$ equation of motion.

The next graph is typical of those you will make during your experiment. Your instructor will discuss some of its features.

Graph:

Position vs. time data from the motion sensor.

What is happening:

- 1. Along the top plateaus marked by A?
- 2. At the downward peaks marked by B?

How do you use this graph to find the period of oscillation of the pendulum?

Starting *DataStudio*:

Create a new experiment. Plug a motion sensor into the 750 and drag its icon to an input in the Setup window.

Double-click the Motion Sensor icon, set trigger rate to 120. Plot position vs. time.

Ruler Pendulum:

Click Moptions...

Delayed Start = None. Automatic Stop = 10 sec.

Pull ruler aside (from 10 to 50 cm) and release it to swing at the same time you start *DataStudio*. Measure periods for table below.

Displacement	θ_0	Period
0.10 m	0.10	
0.25 m	0.25	
0.50 m	0.52	

Modified Pendulum:

Displacement	Weight	Position	Period
0.20 m	58.6 g	0.25 m	
0.20 m	58.6 g	0.50 m	
0.20 m	58.6 g	0.90 m	

Clip a 50 gm brass weight to the ruler at positions in table in order to change the moment of inertia. (Clip is 8.6 gm.) Measure the period of oscillation.