MIT 8.01T Physics I

Experiment 9: Angular Momentum

Goal

To investigate conservation of angular momentum and kinetic energy in rotational collisions.

Measure and calculate moments of inertia.
Measure and calculate non-conservative work in an inelastic collision.

Apparatus :

Phototransistor connects to channel A of 750 .
Tach-generator to channel B.
Connect power supply.
Red button applies power to motor.

Put black sticker or tape on white plastic rotor for tachometer-generator calibration.

Calibrate Tachometer-generator:

Spin motor up to full speed, let it coast. Sample Rate: 5000 Hz , and Sensitivity: Low. Measure and plot voltages for 0.25 s period.

Time for 10 periods to measure ω.

Average the output voltage over the same 10 periods.

Then calculate ω for 1 V output.

Measure Rotor I_{R} :

Plot only the generator voltage for rest of expt. Use a 55 gm weight to accelerate the rotor.
Sensitivity: Low Sample rate 500 Hz . Delayed start: None Auto Stop: 4 seconds

Start DataStudio and let the weight drop.

Graph:

Generator voltage while measuring I_{R}. What is happening:

1. Along line A-B ?
2. At point B ?
3. Along line B-C ?

How do you use this graph to find I_{R} ?

Measure I_{R} Results:

Measure and record $\alpha_{\text {up }}$ and $\alpha_{\text {down }}$. For your report, calculate I_{R}.

$$
I_{R}=\frac{m r\left(g-r \alpha_{\mathrm{up}}\right)}{\alpha_{\mathrm{up}}-\left|\alpha_{\mathrm{down}}\right|}
$$

Fast Collision:

Sensitivity	Sample Rate	Delayed Start	Auto Stop
Low	200 Hz	1 sec	Falls below 0.5 V

Find ω_{1} (before) and ω_{2} (after), estimate δt for collision.
Calculate $\quad I_{W}=\frac{1}{2} m \omega\left(r_{o}^{2}-r_{i}^{2}\right)$

Slow Collision:

Find ω_{1} and ω_{2}, measure δt, fit or measure to find α_{c}. Keep a copy of your results for the homework problem.

