

MIT 8.01T Physics I

Experiment 9: Angular Momentum

Goal

To investigate conservation of angular momentum and kinetic energy in rotational collisions.

Measure and calculate moments of inertia.

Measure and calculate non-conservative work in an inelastic collision.

Apparatus :

Phototransistor connects to channel A of 750. Tach-generator to channel B. Connect power supply. Red button applies power to motor.

Put black sticker or tape on white plastic rotor for tachometer-generator calibration.

Calibrate Tachometer-generator:

Spin motor up to full speed, let it coast. Sample Rate: 5000 Hz, and Sensitivity: Low. Measure and plot voltages for 0.25 s period.

Time for 10 periods to measure ω .

Average the output voltage over the same 10 periods.

Then calculate ω for 1 V output.

Measure Rotor I_R :

Plot only the generator voltage for rest of expt. Use a 55 gm weight to accelerate the rotor. Sensitivity: Low Sample rate 500 Hz. Delayed start: None Auto Stop: 4 seconds

Start DataStudio and let the weight drop.

Graph:

Generator voltage while measuring I_R . What is happening:

- 1. Along line A-B?
- 2. At point B?
- 3. Along line B-C?

How do you use this graph to find I_R ?

Measure I_R Results:

Measure and record α_{up} and α_{down} . For your report, calculate I_R .

$$\tau_f = I_R \alpha_{\text{down}} \qquad I_R = \frac{mr(g - r\alpha_{\text{up}})}{\alpha_{\text{up}} - |\alpha_{\text{down}}|}$$

1

Fast Collision:

Sensitivity	Sample Rate	Delayed Start	Auto Stop
Low	200 Hz	1 sec	Falls below 0.5V

Find ω_1 (before) and ω_2 (after), estimate δt for collision.

Calculate
$$I_W = \frac{1}{2}m\omega(r_o^2 - r_i^2)$$

Slow Collision:

Find ω_1 and ω_2 , measure δt , fit or measure to find α_c . Keep a copy of your results for the homework problem.