MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department

Physics 8.01T]	Fall Term 2004
	Experiment 07: Momentum	
Section: _	Table and Group:	_
Participants: _		
-		
_		

Each group need turn in only one report. Make sure that you each have a copy of your data, as you will need it for a problem on Problem Set 9. (You can find a copy of the problem at the end of the notes for the experiment.)

Part One: Inelastic Collisions

Enter your data for the three inelastic collisions into the table below.

m_A	m_B	$v_{A,1} ({ m m/s})$	$v_2 (m/s)$
$0.25\mathrm{kg}$	$0.25\mathrm{kg}$		
$0.25\mathrm{kg}$	$0.50\mathrm{kg}$		
$0.50\mathrm{kg}$	$0.25\mathrm{kg}$		

Question 1: Is the kinetic energy constant in these collisions? If not, where did this energy go? Is it a reversible process?

Part Two: Elastic Collisions

Enter the results measured by your group for elastic collisions into the table below.

If you assume that cart B collides elastically with the force sensor, then during the collision the momentum of cart B changes by $\Delta \vec{\mathbf{p}}_B = -2m_B \vec{\mathbf{v}}_{B,2}$. This change in momentum is the impulse that the force sensor exerts on the target cart B. Cart B therefore exerts an equal and opposite impulse on the force sensor; both have magnitude $J = 2m_B v_{B,2}$. Measuring this impulse allows you to calculate the velocity of the target cart after the collision, $v_{B,2} = J/2m_B$.

m_A	m_B	$v_{A,1}$	$v_{A,2}$	J
$0.25\mathrm{kg}$	$0.25\mathrm{kg}$			
$0.25\mathrm{kg}$	$0.75\mathrm{kg}$			
$0.75\mathrm{kg}$	$0.25\mathrm{kg}$			

Question 2: What is the average impulse of cart A on cart B during each of the three collisions? While the carts were colliding, did the total kinetic energy change? If so, where did this energy go?