MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Physics Department

Experiment 08: The Physical Pendulum

Section: \qquad Table and Group: \qquad

Participants:

\qquad
\qquad
\qquad
Each group need turn in only one report. Make sure that you each have a copy of your data, as you will need it for a problem on Problem Set 10. (You can find a copy of the problem at the end of the notes for the experiment.)

Part One: Bare Ruler Pendulum

Enter your data for the three initial amplitudes of the ruler pendulum into the table below.

Displacement	θ_{0}	Period
0.10 m	0.10	
0.25 m	0.25	
0.50 m	0.52	

1. Estimate the error in your measurement of the period T of the pendulum and explain why you made that estimate.
2. The first order correction to the $\sin \theta=\theta$ approximation gives a period $T\left(\theta_{0}\right)=T(0)\left[1+\theta_{0}^{2} / 16\right]$ where θ_{0} is the angular amplitude (in radians) of the pendulum motion and $T(0)$ is the period assuming the approximation is exact. Calculate the correction and compare it to your estimated error.
3. Were you able to detect any evidence of the $\sin \theta=\theta$ approximation breaking down?

Part Two: Ruler With Attached Weight

Enter the results measured by your group for the period when a weight was clipped to the ruler into the table below.

Displacement	Weight	Position	Period
0.20 m	58.6 gm	0.25 m	
0.20 m	58.6 gm	0.50 m	
0.20 m	58.6 gm	0.90 m	

