MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department

Physics 8.01T Fall Term 2004

Experiment 08: The Physical Pendulum

Section:	Table and Group:	
Participants:		
•		

Each group need turn in only one report. Make sure that you each have a copy of your data, as you will need it for a problem on Problem Set 10. (You can find a copy of the problem at the end of the notes for the experiment.)

Part One: Bare Ruler Pendulum

Enter your data for the three initial amplitudes of the ruler pendulum into the table below.

Displacement	θ_0	Period
$0.10\mathrm{m}$	0.10	
$0.25\mathrm{m}$	0.25	
$0.50\mathrm{m}$	0.52	

- 1. Estimate the error in your measurement of the period T of the pendulum and explain why you made that estimate.
- 2. The first order correction to the $\sin \theta = \theta$ approximation gives a period $T(\theta_0) = T(0)[1 + \theta_0^2/16]$ where θ_0 is the angular amplitude (in radians) of the pendulum motion and T(0) is the period assuming the approximation is exact. Calculate the correction and compare it to your estimated error.
- 3. Were you able to detect any evidence of the $\sin \theta = \theta$ approximation breaking down?

Part Two: Ruler With Attached Weight

Enter the results measured by your group for the period when a weight was clipped to the ruler into the table below.

Displacement	Weight	Position	Period
$0.20\mathrm{m}$	$58.6\mathrm{gm}$	$0.25\mathrm{m}$	
$0.20\mathrm{m}$	$58.6\mathrm{gm}$	$0.50\mathrm{m}$	
$0.20\mathrm{m}$	$58.6\mathrm{gm}$	$0.90\mathrm{m}$	