Problem 1

A person simultaneously throws two objects in the air. The objects leave the person's hands at different angles and travel along the parabolic trajectories indicated by A and B in the figure below. Which of the following statements best describes the motion of the two objects?

a) The object moving along trajectory \mathbf{A} hits the ground before the object moving along the trajectory \mathbf{B}.
b) The object moving along trajectory A hits the ground after the object moving along trajectory B.
c) Both objects hit the ground at the same time.
d) There is not enough information specified in order to determine which object hits the ground first.

Problem 2

For a parabolic orbit under the influence of gravitation,

1) the magnitude of the velocity can be determined from the slope of the tangent line to the graph of y vs. x but not the direction
2) the magnitude and direction of the velocity can be determined from the slope of the tangent line to the graph of y vs. x
3) the magnitude and direction of the velocity cannot be determined from the slope of the tangent line to the graph of y vs. x
4) the direction of the velocity can be determined from the slope of the tangent line to the graph of y vs. x but not the magnitude.

Problem 3

Consider the situation depicted here. A stone is accurately aimed at a person hanging from the gutter of a building. The target is well within the stone's range, but the instant the stone is thrown, the person lets go and drops to the ground. The stone moves with a speed v_{0}, just as it is released. What happens? The stone

1) hits the person, regardless of the value of v_{0};
2) hits the person only if v_{0} is large enough;
$3)$ misses the person.

Problem 4

Consider a heavy projectile moving on an arc due to gravity. As it reaches the highest point in its arc, what can we say about the speed and acceleration of the object?

1) The speed and magnitude of the acceleration are zero.
2) The speed is at a minimum.
3) The magnitude of the acceleration is at a minimum.
4) Neither the magnitude of the acceleration nor the speed is minimized.
