TEAL

Technology Enhanced Active Learning

Interactive online homework
Group problem solving
Personal Response System
Peer Instruction

NOT

Uninterrupted Lectures
Lecture demonstrations
Textbook reading to introduce material

Gain on the MIT Final Exam

Written Homework

Gain on Force Concept Inventory - data C. Ogilvie 2000

Overview

- Lecture/presentations
- In-class experiments
- Expert problem solving
- Schedule
- Grading
- WWW page

Lecture/Presentations: Mon./Wed. first hour

- Like lectures, but less formal (discussion, PRS questions, interruption encouraged).
- Notes usually available on server.
- Personal response system (PRS) questions: to stimulate discussion \& indicate how concepts are going over.
- In-class problem solving for class/group discussion. There will usually be five people in the room to help out (instructor, grad \& two undergrad TAs, and demo-group member).

Experiments: Wed. second hour

- Pre-experiment question part of problem set.
- Carried out by groups of three, in class.
- Laptops with DataStudio and other software; most experiments will interface to laptops.
- Conceptual Report due at end of experiment.
- Post-experiment data analysis part of problem set.

Expert Problem Solving

- Mon: In class problem solving session, basics.
- Tues: Problem Set due at 4 pm .
- Thurs: Mastering Physics assignment (due at 10 pm) advanced problem solving.
- Fri: In class problem solving session, advanced.
- Sun 1-5 pm : Tutoring.
- Sun: Mastering Physics assignment (due at 10 pm) introduction to weekly material.

Schedule

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Morning	Hour 1 (10-11): Lecture Hour2 (11-12): Problem		Hour1 (10-11): Lecture Hour2 (11-12): Experiment		Hour 1 (11-12): Advanced problem solving		
Afternoon		Problem set due by 04:00pm					13:00-17:00
Evening				Mastering Physics due: 22:00 3 tests (19:30- 21:30): Sep. 30, Oct. 28 and Nov. 18			Mastering Physics due: 22:00

Grading policy: Weighting scheme

- Tests + Final Exam 45\% $+20 \%$ Individual
- Homework PS 10\%
- Mastering Physics 10\%
- Experiments 5\%
- In class work and PRS 10\%

Grading policy: Breakpoints

$\mathrm{A}+\geq 95$	$\mathrm{~A} \geq 90$	$\mathrm{~A}-\geq 85$
$\mathrm{~B}+\geq 81$	$\mathrm{~B} \geq 77$	$\mathrm{~B}-\geq 73$
$\mathrm{C}+\geq 69$	$\mathrm{C} \geq 66$	$\mathrm{C}-\geq 63$
	$\mathrm{D} \geq 60$	
	$\mathrm{~F}<60$	

PRS question

A cannonball is shot straight up (not recommended). At the top of its trajectory:

1. It's acceleration is zero, but not its velocity
2. It's velocity is zero as well as its acceleration
3. Neither its velocity nor its acceleration is zero
4. It's velocity is zero, but not its acceleration
5. Both its acceleration and its speed are zero

Pre-Class Diagnostic Test

- 50 minutes for diagnostic test, interrupted by lab tours of 25 min (so 75 min total)

Tours of BEC Experiments

- Students from 3 tables (at a time) will go upstairs to look at Bose-Einstein Condensate experiments at the Center for Ultra Cold Atoms
http://www.rle.mit.edu/cua/default.htm
- Video of Prof. Wolfgang Ketterle Lecture on BEC
http://mitworld.mit.edu/video/77

What is \% difference

 in temperature between summer and winter?15 \% (Kelvin!) i.e. - not much!
Ratio of hottest to coldest?

Temperature Scales

laboratory systems | natural systems \longrightarrow

What is Bose-Einstein condensation (BEC)?

Two condensates ...

Interference of two Bose-Einstein condensates

Andrews, Townsend, Miesner, Durfee, Kurn, Ketterle, Science 275, 589 (1997)

