TEAL

- Technology Enhanced Active Learning
 - Interactive online homework
 - Group problem solving
 - Personal Response System
 - Peer Instruction

NOT

- Uninterrupted Lectures
- Lecture demonstrations
- Textbook reading to introduce material

Gain on the MIT Final Exam

Gain on Force Concept Inventory - data C. Ogilvie 2000

Overview

- Lecture/presentations
- In-class experiments
- Expert problem solving
- Schedule
- Grading
- WWW page

Lecture/Presentations: Mon./Wed. first hour

- Like lectures, but less formal (discussion, PRS questions, interruption encouraged).
- Notes usually available on server.
- Personal response system (PRS) questions: to stimulate discussion & indicate how concepts are going over.
- In-class problem solving for class/group discussion. There will usually be five people in the room to help out (instructor, grad & two undergrad TAs, and demo-group member).

Experiments: Wed. second hour

- Pre-experiment question part of problem set.
- Carried out by groups of three, in class.
- Laptops with *DataStudio* and other software; most experiments will interface to laptops.
- Conceptual Report due at end of experiment.
- Post-experiment data analysis part of problem set.

Expert Problem Solving

- Mon: In class problem solving session, basics.
- Tues: Problem Set due at 4 pm.
- Thurs: Mastering Physics assignment (due at 10pm) advanced problem solving.
- Fri: In class problem solving session, advanced.
- Sun 1-5 pm : Tutoring.
- Sun: Mastering Physics assignment (due at 10pm) introduction to weekly material.

Schedule								
	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	
Morning	Hour1 (10-11): Lecture Hour2 (11-12): Problem	Problem	Hour1 (10-11): Lecture Hour2 (11-12): Experiment		Hour1 (11-12): Advanced problem solving		13.00-17.00	
Alternoon		set due by 04:00pm					13.00-17.00	
Evening				Mastering Physics due: 22:00 3 tests (19:30- 21:30): Sep. 30, Oct. 28 and Nov. 18			Mastering Physics due: 22:00	

Grading policy: Weighting scheme

- Tests + Final Exam 45%+20% Individual
- Homework PS 10%
- Mastering Physics 10%
- Experiments 5%
- In class work and PRS 10%

Grading policy: Breakpoints

$A+ \ge 95$	A ≥ 90	A-≥85
$B+ \ge 81$	$B \ge 77$	B-≥73
C+≥69	$C \ge 66$	C-≥63
	D≥60	
	F < 60	

PRS question

A cannonball is shot straight up (not recommended). At the top of its trajectory:

- 1. It's acceleration is zero, but not its velocity
- 2. It's velocity is zero as well as its acceleration
- 3. Neither its velocity nor its acceleration is zero
- 4. It's velocity is zero, but not its acceleration
- 5. Both its acceleration and its speed are zero

Pre-Class Diagnostic Test

50 minutes for diagnostic test, interrupted by lab tours of
25 min (so 75 min total)

Tours of BEC Experiments

• Students from 3 tables (at a time) will go upstairs to look at Bose-Einstein Condensate experiments at the Center for Ultra Cold Atoms

http://www.rle.mit.edu/cua/default.htm

• Video of Prof. Wolfgang Ketterle Lecture on BEC

http://mitworld.mit.edu/video/77

What is % difference in temperature between summer and winter?

15 % (Kelvin!) i.e. - not much! Ratio of hottest to coldest?

What is Bose-Einstein condensation (BEC)?

High Temperature T: thermal velocity v density d⁻³ "Billiard balls"

Low Temperature T: De Broglie wavelength λdB=h/mv ∝ T^{-1/2} "Wave packets"

T=T_{crit}: Bose-Einstein Condensation λ_{dB} ≈ d "Matter wave overlap"

T=0: Pure Bose condensate "Giant matter wave"

Two condensates ...

Interference of two Bose-Einstein condensates

1 mm

Andrews, Townsend, Miesner, Durfee, Kurn, Ketterle, Science 275, 589 (1997)