Kinematics and One Dimensional Motion

8.01t

Sept 10, 2004

Kinematics

- Kinema means movement
- Mathematical description of motion
- Position
- Displacement
- Velocity
- Acceleration

Coordinate System in One Dimension

- Choice of origin
- Choice of coordinate axis
- Choice of positive direction for the axis
- Choice of unit vectors at each point in space

Position

- Vector from origin to body

$$
\overrightarrow{\mathbf{x}}(t)=x(t) \hat{\mathbf{i}}
$$

Displacement

- change in position coordinate of the object between the times t_{1} and t_{2}

$$
\Delta \overrightarrow{\mathbf{x}} \equiv\left(x\left(t_{2}\right)-x\left(t_{1}\right)\right) \hat{\mathbf{i}} \equiv \Delta x(t) \hat{\mathbf{i}}
$$

Average Velocity

- component of the average velocity, ν_{x}, is the displacement Δx divided by the time interval Δt

$$
\overline{\overrightarrow{\mathbf{v}}}(t) \equiv \frac{\Delta x}{\Delta t} \hat{\mathbf{i}}=\overline{v_{x}}(t) \hat{\mathbf{i}}
$$

Instantaneous velocity

- For time interval Δt, we calculate the average velocity. As $\Delta t \rightarrow 0$, we generate a sequence of average velocities. The limiting value of this sequence is defined to be the x-component of the instantaneous velocity at the time t.

$$
v_{x}(t) \equiv \lim _{\Delta t \rightarrow 0} \overline{v_{x}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{x(t+\Delta t)-x(t)}{\Delta t} \equiv \frac{d x}{d t}
$$

Instantaneous velocity

Average Acceleration

- Change in velocity divided by the time interval

$$
\overline{\overrightarrow{\mathbf{a}}}=\overrightarrow{a_{x} \mathbf{i}} \equiv \frac{\Delta v_{x}}{\Delta t} \hat{\mathbf{i}}=\frac{\left(v_{x, 2}-v_{x, 1}\right)}{\Delta t} \hat{\mathbf{i}}=\frac{\Delta v_{x}}{\Delta t} \hat{\mathbf{i}}
$$

Instantaneous acceleration

- For time interval Δt, we calculate the average acceleration. As $\Delta t \rightarrow 0$, we generate a sequence of average accelerations. The limiting value of this sequence is defined to be the x component of the instantaneous velocity at the time t.

$$
\overrightarrow{\mathbf{a}}(t)=a_{x}(t) \hat{\mathbf{i}}=\lim _{\Delta t \rightarrow 0} \overrightarrow{a_{x}} \hat{\mathbf{i}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t} \hat{\mathbf{i}}=\lim _{\Delta t \rightarrow 0} \frac{v(t+\Delta t)-v(t)}{\Delta t} \hat{\mathbf{i}} \equiv \frac{d v}{d t} \hat{\mathbf{i}}
$$

Instantaneous Acceleration

Constant acceleration: area under the acceleration vs. time graph

$$
\begin{gathered}
a_{x}=\overline{a_{x}}=\frac{\Delta v_{x}}{\Delta t}=\frac{v_{x}(t)-v_{x, 0}}{t} \\
v_{x}(t)=v_{x, 0}+a_{x} t
\end{gathered}
$$

Constant acceleration: Area under the velocity vs. time graph

$$
\begin{gathered}
\operatorname{Area}\left(v_{x}, t\right)=v_{x, 0} t+\frac{1}{2}\left(v_{x}(t)-v_{x, 0}\right\rangle t^{v_{x}(t)} \\
v_{x}(t)=v_{x, 0}+a_{x} t \\
\operatorname{Area}\left(v_{x}, t\right)=v_{x, 0} t+\frac{1}{2}\left(v_{x, 0}+a_{x} t-v_{x, 0}\right) t=v_{x, 0} t+\frac{1}{2} a_{x} t^{2}
\end{gathered}
$$

Constant acceleration: Average velocity

- When the acceleration is constant, the velocity is a linear function of time. Therefore the average velocity is

$$
\begin{gathered}
\overline{v_{x}}=\frac{1}{2}\left(v_{x}(t)+v_{x, 0}\right) \\
\overline{v_{x}}=\frac{1}{2}\left(v_{x}(t)+v_{x, 0}\right)=\frac{1}{2}\left(\left(v_{x, 0}+a_{x} t\right)+v_{x, 0}\right)=v_{x, 0}+\frac{1}{2} a_{x} t
\end{gathered}
$$

Constant acceleration: Area under the velocity vs. time graph

- displacement is equal to the area under the graph of the x-component of the velocity vs. time

$$
\begin{gathered}
\Delta x \equiv x(t)-x_{0}=\overline{v_{x}} t=v_{x, 0} t+\frac{1}{2} a_{x} t^{2}=\operatorname{Area}\left(v_{x}, t\right) \\
x(t)=x_{0}+v_{x, 0} t+\frac{1}{2} a_{x} t^{2}
\end{gathered}
$$

Summary: constant acceleration

- Position

$$
x(t)=x_{0}+v_{x, 0} t+\frac{1}{2} a_{x} t^{2}
$$

- velocity

$$
v_{x}(t)=v_{x, 0}+a_{x} t
$$

Velocity as the integral of the acceleration

Velocity as the integral of the acceleration

- the area under the graph of the acceleration vs. time is the change in velocity

$$
\begin{aligned}
& \int_{t=0}^{t^{t}=t} a_{x}\left(t^{\prime}\right) d t^{\prime} \equiv \lim _{\Delta \Delta_{i} \rightarrow 0} \sum_{i=1}^{i=N} a_{x}\left(t_{i}\right) \Delta t_{i}=\operatorname{Area}\left(a_{x}, t\right) \\
& \int_{t^{\prime}=0}^{t^{\prime}=t} a_{x}\left(t^{\prime}\right) d t^{\prime}=\int_{t^{\prime}=0}^{t^{\prime}=t} \frac{d v_{x}}{d t} d t^{\prime}=\int_{v_{x}^{\prime}=v_{x}(t=0)}^{v_{x}=v^{\prime}(t)} d v_{x}^{\prime}=v_{x}(t)-v_{x, 0}
\end{aligned}
$$

Position as the integral of velocity

- area under the graph of velocity vs. time is the displacement

$$
\begin{gathered}
v_{x}(t) \equiv \frac{d x}{d t} \\
\int_{t^{\prime}=0}^{t^{\prime}=t} v_{x}\left(t^{\prime}\right) d t^{\prime}=x(t)-x_{0}
\end{gathered}
$$

Example:

- A runner accelerates from rest for an interval of time and then travels at a constant velocity. How far did the runner travel?

I. Understand - get a conceptual grasp of the problem

- stage 1: constant acceleration
- stage 2: constant velocity.

Tools:
Coordinate system

Kinematic equations

Devise a Plan:

Stage 1: constant acceleration

Initial conditions: $\quad x_{0}=0 \quad v_{x, 0}=0$
Kinematic Equations: $\quad x(t)=\frac{1}{2} a_{x} t^{2} \quad v_{x}(t)=a_{x} t$
Final Conditions: end acceleration at $t=t_{a}$
position: $\quad x_{a} \equiv x\left(t=t_{a}\right)=\frac{1}{2} a_{x} t_{a}{ }^{2}$
velocity

$$
v_{x, a} \equiv v_{x}\left(t=t_{a}\right)=a_{x} t_{a}
$$

Devise a Plan

Stage 2: constant velocity, time interval $\left[t_{a}, t_{b}\right]$

- runs at a constant velocity for the time $t_{b}-t_{a}$
- final position $x_{b} \equiv x\left(t=t_{b}\right)=x_{a}+v_{x, a}\left(t_{b}-t_{a}\right)$

III. Solve

- three independent equations

$$
\begin{gathered}
x_{a}=\frac{1}{2} a_{x} t_{a}^{2} \\
v_{x, a}=a_{x} t_{a} \\
x_{b}=x_{a}+v_{x, a}\left(t_{b}-t_{a}\right)
\end{gathered}
$$

- Six unknowns: $\begin{array}{lllllll}x_{b} & x_{a} & v_{x, a} & a_{x} & t_{a} & t_{b}\end{array}$
- Need three extra facts: for example:

$$
a_{x} \quad t_{a} \quad t_{b}
$$

III. Solve

- solve for distance the runner has traveled

$$
x_{b} \equiv x\left(t=t_{b}\right)=\frac{1}{2} a_{x} t_{a}^{2}+a_{x} t_{a}\left(t_{b}-t_{a}\right)=a_{x} t_{a} t_{b}-\frac{1}{2} a_{x} t_{a}^{2}
$$

IV. Look Back : Choose Values

runner accelerated for
initial acceleration:

$$
a_{x}=2.0 \mathrm{~m} \cdot \mathrm{~s}^{-2}
$$

runs at a constant velocity for $\quad t_{b}-t_{a}=6.0 \mathrm{~s}$

Total time of running $\quad t_{b}=t_{a}+6.0 \mathrm{~s}=3.0 \mathrm{~s}+6.0 \mathrm{~s}=9.0 \mathrm{~s}$

Total distance running
$x_{\text {total }}=a_{x} t_{a} t_{b}-\frac{1}{2} a_{x} t_{a}{ }^{2}=\left(2.0 \mathrm{~m} \cdot \mathrm{~s}^{-2}\right)(3.0 \mathrm{~s})(9.0 \mathrm{~s})-\frac{1}{2}\left(2.0 \mathrm{~m} \cdot \mathrm{~s}^{-2}\right)(3.0 \mathrm{~s})^{2}=4.5 \times 10^{1} \mathrm{~m}$
Final velocity

$$
v_{x, a}=a_{x} t_{a}=\left(2.0 \mathrm{~m} \cdot \mathrm{~s}^{-2}\right)(3.0 \mathrm{~s})=6.0 \mathrm{~m} \cdot \mathrm{~s}^{-1}
$$

