Problem Solving Methodologies for Two Dimensional Kinematics 8.01T Sept 17, 2004

1: Understand – a get conceptual grasp of the problem

- How many objects are involved in the problem?
- How many different stages of motion occur?
- For each object, how many independent directions are needed to describe the motion of that object?

1: Understand – a get conceptual grasp of the problem

- What choice of coordinate system best suits the problem?
- What information can you infer from the problem?

2. Devise a Plan - set up a procedure to obtain the desired solution

- Sketch the problem
- For each object in the problem, choose a coordinate system
- Write down the complete set of equations for the position and velocity functions; identify any specified quantities; clean up the equations.

Equations of Motion: y-direction

 Acceleration ycomponent:

$$a_y = -g$$

$$v_{y}(t) = v_{y,0} - gt$$

• Velocity y-component:

 Position ycomponent:

Equations of Motion: x-direction

Acceleration x-component:

$$a_{x} = 0$$

- Velocity x-component:
- Position x-component:

2. Devise a Plan - set up a procedure to obtain the desired solution

- Identify given information
- Identify 'initial state' with initial conditions
- Initial position depends on choice of origin

$$\vec{r}_0 = x_0\hat{i} + y_0\hat{j}$$

 Identify any other 'state' of the system, possibly the 'final state' with appropriate conditions for kinematic quantities

Initial Conditions: velocity

 $\vec{\mathbf{v}}_0(t) = v_{x,o}\hat{\mathbf{i}} + v_{y,o}\hat{\mathbf{j}}$ Initial velocity $v_{x,0} = v_0 \cos \theta_0$ with components: $v_{y,0} = v_0 \sin \theta_0$

- Magnitude
 - $v_0 = (v_{x,0}^2 + v_{y,0}^2)^{1/2}$

direction

$$\theta_0 = \tan^{-1}(\frac{v_{y,0}}{v_{x,0}})$$

2. Devise a Plan - set up a procedure to obtain the desired solution

- Design a strategy for solving the system of equations.
- You can solve a system of n independent equations if you have exactly n unknowns.
- These quantities are specified as numbers

 $x_0, y_0, v_{x,0}, v_{y,0}, a_x, a_y$

• While these quantities vary

 $x(t), y(t), v_x(t), v_y(t), t$

• Look for constraint conditions

Design a strategy for solving the system of equations.

3. Carry our your plan

solve the problem!

4. Look Back – check your solution and method of solution

- Check your algebra and units.
- Substitute in numbers.
- Check any possible limiting behavior
- Think about the result
- Solved problems act as models for thinking about new problems.

In-Class Problem 2:Throwing a Stone Down a Hill

 A person is standing on top of a hill which slopes downwards uniformly at an angle Φ θ₀ with respect to the horizontal. The person throws a stone at an initial angle θ₀ from the horizontal with an initial speed of v₀. You may neglect air resistance. How far below the top of the hill does the stone strike the ground?

Class Problem 3

 A person is standing on a ladder holding a pail. The person releases the pail from rest at a height, h_1 , above the ground. As second person standing some distance away aims and throws a small ball in order to hit the first ball with an initial velocity that has magnitude, V_0 , and thrown at an angle, θ_0 , with respect to the horizontal. The second person releases the ball at a height, h_2 , above the ground and a horizontal distance, S_2 , from the line of flight of the first ball. You may ignore air resistance.

Class Problem 3: Continued

- a) Find an expression for the angle that the person aims the ball in order to hit the pail as a function of the other variables given in the problem
- b) If the person aims correctly, find an expression for the range of speeds that the ball must be thrown at in order to hit the pail?