Cross Product, Torque, and Static Equilibrium

8.01t Oct 6, 2004

Cross Product

• The magnitude of the cross product

 $\left| \vec{\mathbf{A}} \times \vec{\mathbf{B}} \right| = AB \sin \theta$ $0 \le \theta \le \pi$

Direction of Cross Product

Area and the Cross Product

• The area of the parallelogram equals the height times the base, which is the magnitude of the cross product.

Properties

$\vec{\mathbf{A}} \times \vec{\mathbf{B}} = -\vec{\mathbf{B}} \times \vec{\mathbf{A}}$

$c(\vec{\mathbf{A}} \times \vec{\mathbf{B}}) = \vec{\mathbf{A}} \times c\vec{\mathbf{B}} = c\vec{\mathbf{A}} \times \vec{\mathbf{B}}$

 $(\vec{A} + \vec{B}) \times \vec{C} = \vec{A} \times \vec{C} + \vec{B} \times \vec{C}$

Unit Vectors and the Cross Product

• Unit vectors 1

î

 $\hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}}$

$$\begin{vmatrix} \hat{\mathbf{i}} \times \hat{\mathbf{j}} \\ \hat{\mathbf{i}} \times \hat{\mathbf{j}} \end{vmatrix} = \begin{vmatrix} \hat{\mathbf{i}} \\ \hat{\mathbf{j}} \end{vmatrix} \sin(\pi/2) = 0$$
$$\begin{vmatrix} \hat{\mathbf{i}} \times \hat{\mathbf{i}} \\ \hat{\mathbf{i}} \times \hat{\mathbf{j}} \end{vmatrix} = \begin{vmatrix} \hat{\mathbf{i}} \\ \hat{\mathbf{i}} \end{vmatrix} \begin{vmatrix} \hat{\mathbf{i}} \\ \hat{\mathbf{j}} \\ \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \\ \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \vec{\mathbf{0}} \end{vmatrix}$$

 $\hat{\mathbf{k}} \times \hat{\mathbf{k}} = \vec{\mathbf{0}}$

Vector Components of Cross Product

$$\vec{\mathbf{A}} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}$$
$$\vec{\mathbf{B}} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}}$$

 $\vec{\mathbf{A}} \times \vec{\mathbf{B}} = (A_y B_z - A_z B_y)\hat{\mathbf{i}} + (A_z B_x - A_x B_z)\hat{\mathbf{j}} + (A_x B_y - A_y B_x)\hat{\mathbf{k}}$

PRS Question 1

Consider two vectors $\vec{\mathbf{r}}_{P,F} = x\hat{\mathbf{i}}$ with x >0 and $\vec{\mathbf{F}} = F_x\hat{\mathbf{i}} + F_z\hat{\mathbf{k}}$ with $F_x > 0$ and $F_z > 0$ The cross product $\vec{\mathbf{r}}_{P,F} \times \vec{\mathbf{F}}$

points in the

- 1) + x-direction
- 2) -x-direction
- 3) +y-direction
- 4) -y-direction
- 5) +z-direction
- 6) -z-direction
- 7) None of the above directions

Rigid Bodies

- external forces make the center of the mass translate
- external `torques' make the body rotate about the center of mass

Center of Mass

A rigid body can be balanced by pivoting the body about a special point known as the center of mass

 $F_{pivot} - m_{beam}g - N_1 - N_2 = 0$

Lever Law

• Pivoted Lever at Center of Mass

$$d_1 N_1 = d_2 N_2$$

PRS Question 2

A 1-kg rock is suspended by a massless string from one end of a 1-m measuring stick. What is the weight of the measuring stick if it is balanced by a support force at the 0.25-m mark?

Class Problem 1

Suppose a beam of length s = 1.0 m and mass m = 2.0 kg is balanced on a pivot point that is placed directly beneath the center of the beam. Suppose a mass $m_1 = 0.3$ kg is placed a distance $d_1 = 0.4$ m to the right of the pivot point. A second mass $m_2 = 0.6$ kg is placed a distance d_2 to the left of the pivot point to keep the beam static.

- 1. What is the force that the pivot exerts on the beam?
- 2. What is the distance d₂ that maintains static equilibrium?

Generalized Lever Law

Generalized Lever Law

$$F_{1,\perp} \equiv F_{per,1} = F_1 \sin(\theta_1)$$
$$F_{2,\perp} \equiv F_{per,2} = F_2 \sin(\theta_2)$$
$$d_1 F_{1,\perp} = d_2 F_{2,\perp}$$

Toraue

- Let a force $\vec{\mathbf{F}}_P$ act at a point P
- Let $\vec{\mathbf{r}}_{S,P}$ be the vector from the point S to a point P

$$\vec{\mathbf{\tau}}_{S} = \vec{\mathbf{r}}_{S,P} \times \vec{\mathbf{F}}_{P}$$

Torque

• (1) Magnitude of the $\tau_s = rF_{\perp} = rF\sin\theta$ torque about S

• (2) Direction

Sign Convention

Clockwise positive

- Counterclockwise
- positive

PRS Question 3

You are trying to open a door that is stuck by pulling on the doorknob in a direction perpendicular to the door. If you instead tie a rope to the doorknob and then pull with the same force, is the torque you exert increased?

1. yes 2. no

PRS Question 4

You are using a wrench to loosen a rusty nut. Which of the arrangements shown is most effective in loosening the nut?

Line of Action of the Force

• Moment Arm:

• Torque: $\tau_s = rF_\perp = rF\sin\theta = r_\perp F$

Two Geometric Interpretations of Torque

• Area of the torque parallelogram.

Static Equilibrium

(1) The sum of the forces acting on the rigid body is zero

$$\vec{\mathbf{F}}_{total} = \vec{\mathbf{F}}_1 + \vec{\mathbf{F}}_2 + \ldots = \vec{\mathbf{0}}$$

(2) The vector sum of the torques about any point S in a rigid body is zero

$$\vec{\boldsymbol{\tau}}_{S}^{total} = \vec{\boldsymbol{\tau}}_{S,1} + \vec{\boldsymbol{\tau}}_{S,2} + \ldots = \vec{\boldsymbol{0}}$$

PRS Question 5

A box, with its center-of-mass off-center as indicated by the dot, is placed on an inclined plane. In which of the four orientations shown, if any, does the box tip over?

Experiment 05A: Static equilibrium

Goal

When a weight is suspended by two strings in the center as shown in the photograph below, the tension is given as follows:

Setup

- Align the right edge of the ruler with the center of a column of holes.
- Maintain the same horizontal distance for all measurements.
- A second string along the top marks the horizontal line between the two string support lines.
- □ The vertical drop () from this line is what you have to measure to determine the angle θ.

- Ensure string passes over pulley before all measurements.
- Keep line of sight perpendicular to board to minimize parallax.

Setting DataStudio

Create a new experiment. Drag the force sensor to the interface in the Experiment Setup window.

Double-click the force sensor icon to open a window to set the Sensor Properties.

Force sensor

Sensor Properties	Sensor Properties	×
General Measurement Calibration	General Measurement Calibration	
Force Sensor Model: CI-6537, CI-6746	Current Reading High Point Low Point Voltage: 0.207 Voltage: Voltage: -0.207 8.000 -8.000 Value: Value: Value: Value: -1.29 50.00 -50.00 Take Reading Take Reading Take Reading	
Sample Rate	Name: Sensitivity:	
Slow Force Changes (Spring Tests) Fast Force Changes (Collisions)	Range: Units: Accuracy: -8.00 to 8.00 N 0.01	
OK Cancel Help	OK Cancel Help	

Under General set Sample Rate to 10Hz and select Slow Force Changes.

□ Under Calibration choose Sensitivity Low (1x)

Next: Click Month Options...

Options for force sensor

Sampling Options	×
Manual Sampling Delayed Start Automatic Stop	
 Keep data values only when commanded. Enter a keyboard value when data is kept. Prompt for a value. Keyboard Data 	
Vertical Drop (inches)	
Name: Vertical Drop	
Units: Accuracy: inches 1.00E-3	
Edit All Properties	
Include a list of prompt values for this keyboard data.	
OK Cancel Help	

- \square Check all three boxes.
- Choose New Keyboard Data from the pull-down list in the Keyboard Data area.
- Click Edit all Properties tab which will open another window which allows to name variables and assign units (e.g. Vertical drop and units in mm)
- Click OK on Manual Sampling window. A new variable should appear in the Data window.

Ready to go...!

Data taking

□ Click Start! Button turns to Keep.

□ Measure vertical drop, click Keep.

□ Enter vertical drop into window.

□ Shorten string, repeat for 10 to 12 measurements.

□ Ensure string passes over pulley.

- Make 2-3 measurements with vertical drop 1.25" or less.
 (String will be tight even without the weight!)
- □ Click red stop button when finished.

□ Calculate sinθ from your vertical drop measurements (see write

□ Calculate sinθ from your vertical drop measurements (see write up).

 \Box Plot force on y axis, sin θ on x axis.

 \Box Fit y = A/x (User-defined fit) to your data.

Report

□ Hand-in experiment report.

□ There is a follow-up question as part of your PS!