Cross Product, Torque, and Static Equilibrium

8.01t

Oct 6, 2004

Cross Product

- The magnitude of the cross product

$$
|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}|=A B \sin \theta \quad 0 \leq \theta \leq \pi
$$

Direction of Cross Product

Area and the Cross Product

- The area of the parallelogram equals the height times the base, which is the magnitude of the cross product.

$$
|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}|=A(B \sin \theta) \quad|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}|=(A \sin \theta) B
$$

Properties

$$
\begin{gathered}
\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=-\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{A}} \\
c(\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}})=\overrightarrow{\mathbf{A}} \times c \overrightarrow{\mathbf{B}}=c \overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}} \\
(\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}) \times \overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{C}}+\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}}
\end{gathered}
$$

Unit Vectors and the Cross Product

- Unit vectors

$$
\begin{aligned}
& |\hat{\mathbf{i}} \times \hat{\mathbf{j}}|=|\hat{\mathbf{i}}||\hat{\mathbf{j}}| \sin (\pi / 2)=1 \\
& |\hat{\mathbf{i}} \times \hat{\mathbf{i}}|=|\hat{\mathbf{i}}||\hat{\mathbf{i}}| \sin (0)=0 \\
& \hat{\mathbf{i}} \times \hat{\mathbf{j}}=\hat{\mathbf{k}} \quad \hat{\mathbf{i}} \times \hat{\mathbf{i}}=\overrightarrow{\mathbf{0}} \\
& \hat{\mathbf{j}} \times \hat{\mathbf{k}}=\hat{\mathbf{i}} \quad \hat{\mathbf{j}} \times \hat{\mathbf{j}}=\overrightarrow{\mathbf{0}} \\
& \hat{\mathbf{k}} \times \hat{\mathbf{i}}=\hat{\mathbf{j}} \quad \hat{\mathbf{k}} \times \hat{\mathbf{k}}=\overrightarrow{\mathbf{0}}
\end{aligned}
$$

Vector Components of Cross Product

$$
\begin{gathered}
\overrightarrow{\mathbf{A}}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}} \\
\overrightarrow{\mathbf{B}}=B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}+B_{z} \hat{\mathbf{k}} \\
\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{\mathbf{i}}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{\mathbf{j}}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{\mathbf{k}}
\end{gathered}
$$

PRS Question 1

Consider two vectors $\quad \overrightarrow{\mathbf{r}}_{P, F}=x \hat{\mathbf{i}} \quad$ with $\mathrm{x}>0$ and

$$
\overrightarrow{\mathbf{F}}=F_{x} \hat{\mathbf{i}}+F_{z} \hat{\mathbf{k}} \quad \text { with } \mathrm{F}_{\mathrm{x}}>0 \text { and } \mathrm{F}_{\mathrm{z}}>0
$$

The cross product $\quad \overrightarrow{\mathbf{r}}_{P, F} \times \overrightarrow{\mathbf{F}}$
points in the

1) $+x$-direction
2) -x-direction
3) $+y$-direction
4) $-y$-direction
5) $+z$-direction
6) -z-direction
7) None of the above directions

Rigid Bodies

- external forces make the center of the mass translate
- external `torques' make the body rotate about the center of mass

Center of Mass

A rigid body can be balanced by pivoting the body about a special point known as the center of mass

$$
\overrightarrow{\mathbf{R}}_{c m}=\frac{\sum_{i=1}^{i=N} m_{i} \overrightarrow{\mathbf{r}}_{i}}{\sum_{i=1}^{i=N} m_{i}}
$$

$$
\overrightarrow{\mathbf{R}}_{c m}=\frac{m_{1} \overrightarrow{\mathbf{r}}_{1}+m_{2} \overrightarrow{\mathbf{r}}_{2}}{m_{1}+m_{2}}
$$

Pivoted Lever

$$
F_{\text {pivot }}-m_{\text {beam }} g-N_{1}-N_{2}=0
$$

Lever Law

- Pivoted Lever at Center of Mass

$$
d_{1} N_{1}=d_{2} N_{2}
$$

PRS Question 2

A $1-\mathrm{kg}$ rock is suspended by a massless string from one end of a $1-\mathrm{m}$ measuring stick. What is the weight of the measuring stick if it is balanced by a support force at the $0.25-\mathrm{m}$ mark?

1. 0.25 kg
2. 0.5 kg
3. 1 kg
4. 2 kg
5. 4 kg
6. impossible to determine

Class Problem 1

Suppose a beam of length $\mathrm{s}=1.0 \mathrm{~m}$ and mass $\mathrm{m}=2.0 \mathrm{~kg}$ is balanced on a pivot point that is placed directly beneath the center of the beam. Suppose a mass $m_{1}=0.3 \mathrm{~kg}$ is placed a distance $\mathrm{d}_{1}=0.4 \mathrm{~m}$ to the right of the pivot point. A second mass $\mathrm{m}_{2}=0.6 \mathrm{~kg}$ is placed a distance d_{2} to the left of the pivot point to keep the beam static.

1. What is the force that the pivot exerts on the beam?
2. What is the distance d_{2} that maintains static equilibrium?

Generalized Lever Law

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}_{1}=\overrightarrow{\mathbf{F}}_{\text {hor }, 1}+\overrightarrow{\mathbf{F}}_{\text {per }, 1} \quad{ }^{\mathrm{mg}} \quad \overrightarrow{\mathbf{F}}_{2}=\overrightarrow{\mathbf{F}}_{\text {hor }, 2}+\overrightarrow{\mathbf{F}}_{\text {per }, 2}
\end{aligned}
$$

Generalized Lever Law

Toraue

- Let a force $\overrightarrow{\mathbf{F}}_{P}$ act at a point P
- Let $\overrightarrow{\mathbf{r}}_{S, P}$ be the vector from the point S to a point P

$$
\overrightarrow{\boldsymbol{\tau}}_{S}=\overrightarrow{\mathbf{r}}_{S, P} \times \overrightarrow{\mathbf{F}}_{P}
$$

Torque

- (1) Magnitude of the $\tau_{S}=r F_{\perp}=r F \sin \theta$ torque about S
- (2) Direction

$$
\overline{\boldsymbol{\tau}}_{S}=\overrightarrow{\mathbf{r}}_{S . P} \times \stackrel{\rightharpoonup}{\mathbf{F}}_{F}
$$

Sign Convention

- Clockwise positive

- Counterclockwise
- positive

PRS Question 3

You are trying to open a door that is stuck by pulling on the doorknob in a direction perpendicular to the door. If you instead tie a rope to the doorknob and then pull with the same force, is the torque you exert increased?

1. yes
2. no

PRS Question 4

You are using a wrench to loosen a rusty nut. Which of the arrangements shown is most effective in loosening
 the nut?

Line of Action of the Force

- Moment Arm:

- Torque:

$$
\tau_{S}=r F_{\perp}=r F \sin \theta=r_{\perp} F
$$

Two Geometric Interpretations of Torque

- Area of the torque parallelogram.

$$
A=\tau_{S}=r_{\perp} F=r F_{\perp}
$$

Static Equilibrium

(1) The sum of the forces acting on the rigid body is zero

$$
\overrightarrow{\mathbf{F}}_{\text {total }}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\ldots=\overrightarrow{\mathbf{0}}
$$

(2) The vector sum of the torques about any point S in a rigid body is zero

$$
\overrightarrow{\boldsymbol{\tau}}_{S}^{\text {total }}=\overrightarrow{\boldsymbol{\tau}}_{S, 1}+\overrightarrow{\boldsymbol{\tau}}_{S, 2}+\ldots=\overrightarrow{\mathbf{0}}
$$

PRS Question 5

A box, with its center-of-mass off-center as indicated by the dot, is placed on an inclined plane. In which of the four orientations shown, if any, does the box tip over?

Experiment 05A: Static equilibrium

Goal

When a weight is suspended by two strings in the center as shown in the photograph below, the tension is given as follows:

Goal: Measure T for several values of θ using measurements of, H (fixed), to verify the equation above!

Setun

A Align the right edge of the ruler with the center of a column of holes.

- Maintain the same horizontal distance for all measurements.
- A second string along the top marks the horizontal line between the two string support lines.
\square The vertical drop () from this line is what you have to measure to determine the angle θ.
- Ensure string passes over pulley before all measurements.
- Keep line of sight perpendicular to board to minimize parallax.

Setting DataStudio

- Create a new experiment. Drag the force sensor to the interface in the Experiment Setup window.

- Double-click the force sensor icon to open a window to set the Sensor Properties.

Force sensor

- Under General set Sample Rate to 10 Hz and select Slow Force Changes.
- Under Calibration choose Sensitivity Low (1x)

Next: Click \%Options...

Options for force sensor

- Check all three boxes.
- Choose New Keyboard Data from the pull-down list in the Keyboard Data area.
- Click Edit all Properties tab which will open another window which allows to name variables and assign units (e.g. Vertical drop and units in mm)
- Click OK on Manual Sampling window. A new variable should appear in the Data window.

Ready to go...!

Data taking

- Click Start! Button turns to Keep.
- Measure vertical drop, click Keep.
- Enter vertical drop into window.

- Shorten string, repeat for 10 to 12 measurements.
- Ensure string passes over pulley.
- Make 2-3 measurements with vertical drop 1.25" or less. (String will be tight even without the weight!)
- Click red stop button when finished.

Analyzing data

- Calculate $\sin \theta$ from your vertical drop measurements (see write up).
- Plot force on y axis, $\sin \theta$ on x axis.
\square Fit $y=A / x$ (User-defined fit) to your data.

Report

- Hand-in experiment report.
- There is a follow-up question as part of your PS!

