Problem Solving Strategies: Work and the Dot Product

8.01t

Oct 15, 2003

Class Problem 1

Work done by Gravity Near the Surface of the Earth
Consider an object of mass m near the surface of the earth falling directly towards the center of the earth. The gravitational force between the object and the earth is nearly constant. Suppose the object starts from an initial point y_{0} and moves to a final point y_{f} closer to the earth. How much work does the gravitational force do on the object as it falls?

Class Problem 2

Work Done by the Spring Force
Connect one end of a spring with spring constant k to an object resting on a smooth table and fix the other end of the spring to a wall. Stretch the spring a distance x_{0} and release the spring-object system. How much work does the spring do on the object as a function of the stretched or compressed length of the object?

Class Problem 3

Work done by the Inverse Square Gravitational Force

Consider an object of mass moving directly towards the sun (mass m_{s}). Initially the object is at a distance r_{0} from the center of the sun. The object moves to a distance r_{f} from the center of the sun. How much work does the gravitational force between the sun and the object do on the object during this motion?

