Statistical Mechanics, Kinetic Theory Ideal Gas

8.01t

Nov 22, 2004

Statistical Mechanics and Thermodynamics

- Thermodynamics Old \& Fundamental
- Understanding of Heat (I.e. Steam) Engines
- Part of Physics Einstein held inviolate
- Relevant to Energy Crisis of Today
- Statistical Mechanics is Modern Justification
-Based on mechanics: Energy, Work, Momentum
-Ideal Gas model gives observed thermodynamics
- Bridging Ideas

Temperature (at Equilibrium) is Average Energy
Equipartition - as simple/democratic as possible

Temperature and Equilibrium

- Temperature is Energy per Degree of Freedom
- More on this later (Equipartition)
- Heat flows from hotter to colder object Until temperatures are equal
Faster if better thermal contact
Even flows at negligible $\Delta \mathrm{t}$ (for reversible process)
- The Unit of Temperature is the Kelvin Absolute zero (no energy) is at 0.0 K Ice melts at 273.15 Kelvin (0.0 C)
Fahrenheit scale is arbitrary

State Variables of System

- State Variables - Definition

Measurable Static Properties
Fully Characterize System (if constituents known)
e.g. Determine Internal Energy, compressibility Related by Equation of State

- State Variables: Measurable Static Properties
- Temperature - measure with thermometer
- Volume (size of container or of liquid in it)
- Pressure (use pressure gauge)
- Quantity: Mass or Moles or Number of Molecules
- Of each constituent or phase (e.g. water and ice)

Equation of State

- A condition that the system must obey
- Relationship among state variables
- Example: Perfect Gas Law
- Found in 18th Century Experimentally
$-\mathrm{pV}=\mathrm{NkT}=\mathrm{nRT}$
-K is Boltzmann's Constant $1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
-R is gas constant $8.315 \mathrm{~J} / \mathrm{mole} / \mathrm{K}$
- Another Eq. Of State is van der Waals Eq.
- You don't have to know this.

$\mathbf{P V}=\mathbf{n} \mathbf{R} \mathbf{T}=\mathbf{N k} \mathbf{T}$

- P is the Absolute pressure
- Measured from Vacuum = 0
- Gauge Pressure = Vacuum - Atmospheric
- Atmospheric $=14.7 \mathrm{lbs} / \mathrm{sq}$ in $=10^{5} \mathrm{~N} / \mathrm{m}$
- V is the volume of the system in m^{3}
- often the system is in cylinder with piston
- Force on the piston does work on world

PV = n R T = N k T chemists vs physicists

- Mole View (more Chemical) $=$ nRT
- R is gas constant $8.315 \mathrm{~J} / \mathrm{mole} / \mathrm{K}$
- Molecular View (physicists) = NkT
$-N$ is number of molecules in system
-K is Boltzmann's Constant $1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$

Using PV=nRT

- Recognize: it relates state variables of a gas
- Typical Problems
- Lift of hot air balloon
- Pressure change in heated can of tomato soup
- Often part of work integral

Heat and Work are Processes

- Processes accompany/cause state changes
- Work along particular path to state B from A
- Heat added along path to B from A
- Processes are not state variables
- Processes change the state!
- But Eq. Of State generally obeyed

Ideal Gas Law Derivation: Assumptions

- Gas molecules are hard spheres without internal structure
- Molecules move randomly
- All collisions are elastic
- Collisions with the wall are elastic and instantaneous

Gas Properties

- N number of atoms in volume
- n_{m} moles in volume
- m is atomic mass $\left({ }^{12} \mathrm{C}=12\right)$
- mass density

$$
\rho=\frac{m_{T}}{V}=\frac{n m}{V}=\frac{n_{m} N_{A} m}{V}
$$

- Avogadro's Number $N_{A}=6.02 \times 10^{23}$ molecules \cdot mole $^{-1}$

Motion of Molecules

- Assume all molecules have the same velocity (we will drop this latter)
- The velocity distribution is isotropic

Collision with Wall

- Change of $\hat{\mathbf{i}}: \Delta p_{x}=-m v_{x, f}-m v_{x, 0}$ momentum

$$
\hat{\mathbf{j}}: \Delta p_{y}=m v_{y, f}-m v_{y, 0}
$$

- Elastic collision

$$
\begin{gathered}
v_{y, f}=v_{y, 0} \\
v_{x} \equiv v_{x, f}=v_{x, 0}
\end{gathered}
$$

$$
\hat{\mathbf{i}}: \Delta p_{x}=-2 m v_{x}
$$

Momentum Flow Tube

- Consider a tube of cross sectional area A and length $v_{x} \Delta t$
- In time Δt half the molecules in tube hit wall
- Mass enclosed that hit wall

$$
\Delta m=\frac{\rho}{2} \text { Volume }=\frac{\rho}{2} A v_{x} \Delta t
$$

Pressure on the wall

- Newton's Second Law

$$
\overrightarrow{\mathbf{F}}_{\text {wall }, g a s}=\frac{\Delta \overrightarrow{\mathbf{p}}}{\Delta t}=\frac{-2 \Delta m v_{x}}{\Delta t} \hat{\mathbf{i}}=-\frac{2 \rho A v_{x}^{2} \Delta t}{2 \Delta t} \hat{\mathbf{i}}=-\rho A v_{x}^{2} \hat{\mathbf{i}}
$$

- Third Law

$$
\overrightarrow{\mathbf{F}}_{\text {gas wall }}=-\overrightarrow{\mathbf{F}}_{\text {wall, gas }}=\rho A v_{x}^{2} \hat{\mathbf{i}}
$$

- Pressure

$$
P_{\text {pressure }}=\frac{|\overrightarrow{\mathbf{F}}|_{\text {gas , wall }}}{A}=\rho v_{x}^{2}
$$

Average velocity

- Replace the square of the velocity with the average of the square of the velocity

$$
\left(v_{x}^{2}\right)_{\text {ave }}
$$

- random motions imply

$$
\left(v^{2}\right)_{\text {ave }}=\left(v_{x}^{2}\right)_{\text {ave }}+\left(v_{y}^{2}\right)_{\text {ave }}+\left(v_{z}^{2}\right)_{\text {ave }}=3\left(v_{x}^{2}\right)_{\text {ave }}
$$

- Pressure

$$
P_{\text {pressure }}=\frac{1}{3} \rho\left(v^{2}\right)_{\text {ave }}=\frac{2}{3} \frac{n_{m} N_{A}}{V} \frac{1}{2} m\left(v^{2}\right)_{\text {ave }}
$$

Degrees of Freedom in Motion

- Three types of degrees of freedom for molecule

1. Translational
2. Rotational
3. Vibrational

- Ideal gas Assumption: only 3 translational degrees of freedom are present for molecule with no internal structure

Equipartition theorem: Kinetic energy and temperature

- Equipartition of Energy Theorem

$$
\frac{1}{2} m\left(v^{2}\right)_{\text {ave }}=\frac{(\# \text { degrees of freedom })}{2} k T=\frac{3}{2} k T
$$

- Boltzmann Constant $k=1.38 \times 10^{-23} \mathrm{~J} \cdot \mathrm{~K}^{-1}$
- Average kinetic of gas molecule defines kinetic temperature

Ideal Gas Law

- Pressure

$$
p_{\text {pressure }}=\frac{2}{3} \frac{n_{m} N_{A}}{V} \frac{1}{2} m\left(v^{2}\right)_{\text {ave }}=\frac{2}{3} \frac{n_{m} N_{A}}{V} \frac{3}{2} k T=\frac{n_{m} N_{A}}{V} k T
$$

- Avogadro's Number $N_{A}=6.022 \times 10^{23}$ molecules $\cdot \mathrm{mole}^{-1}$
- Gas Constant

$$
R=N_{A} k=8.31 \mathrm{~J} \cdot \mathrm{~mole}^{-1} \cdot \mathrm{~K}^{-1}
$$

- Ideal Gas Law

$$
p V=n_{m} R T
$$

Ideal Gas Atmosphere

- Equation of State

$$
P V=n_{m} R T
$$

- Let $\mathrm{M}_{\text {molar }}$ be the molar mass.
- Mass Density $\quad \rho=\frac{n_{m} M_{\text {molar }}}{V}=\frac{M_{\text {molar }}}{R T} P$

- Newton's Second Law

$$
A(P(z)-P(z+\Delta z))-\rho g A \Delta z=0
$$

Isothermal Atmosphere

- Pressure Equation

$$
\frac{P(z+\Delta z)-P(z)}{\Delta z}=\rho g
$$

- Differential equation

$$
\frac{d P}{d z}=-\rho g=-\frac{M_{\text {molar }} g}{R T} P
$$

- Integration

$$
\begin{aligned}
& \int_{P_{0}}^{P(z)} \frac{d p}{p}=-\int_{z=0}^{z} \frac{M_{\text {molar }} g}{R T} d z^{\prime} \\
& \quad \ln \left(\frac{P(z)}{P_{0}}\right)=-\frac{M_{\text {molar }} g}{R T} z
\end{aligned}
$$

- Exponentiate

$$
P(z)=P_{0} \exp \left(-\frac{M_{\text {molar }} g}{R T} z\right)
$$

