Statistical Mechanics, Kinetic Theory Ideal Gas

8.01t Nov 22, 2004

Statistical Mechanics and Thermodynamics

- Thermodynamics Old & Fundamental
 - Understanding of Heat (I.e. Steam) Engines
 - Part of Physics Einstein held inviolate
 - Relevant to Energy Crisis of Today
- Statistical Mechanics is Modern Justification
 - -Based on mechanics: Energy, Work, Momentum
 - -Ideal Gas model gives observed thermodynamics
 - Bridging Ideas

Temperature (at Equilibrium) is Average Energy Equipartition - as simple/democratic as possible

Temperature and Equilibrium

- Temperature is Energy per Degree of Freedom
 - More on this later (Equipartition)
 - Heat flows from hotter to colder object
 Until temperatures are equal
 Faster if better thermal contact
 Even flows at negligible ∆t (for reversible process)
 - The Unit of Temperature is the Kelvin Absolute zero (no energy) is at 0.0 K Ice melts at 273.15 Kelvin (0.0 C) Fahrenheit scale is arbitrary

State Variables of System

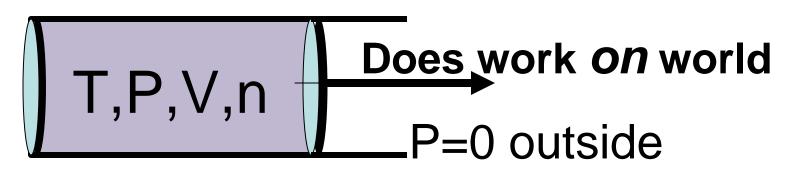
- State Variables Definition
 Measurable Static Properties
 Fully Characterize System (if constituents known)
 e.g. Determine Internal Energy, compressibility
 Related by Equation of State
- State Variables: Measurable Static Properties
 - Temperature measure with thermometer
 - Volume (size of container or of liquid in it)
 - Pressure (use pressure gauge)
 - Quantity: Mass or Moles or Number of Molecules
 - Of each constituent or phase (e.g. water and ice)

Equation of State

- A condition that the system must obey
 - Relationship among state variables
- Example: Perfect Gas Law
 - Found in 18th Century Experimentally
 - -pV = NkT = nRT
 - K is Boltzmann's Constant 1.38x10⁻²³ J/K
 - R is gas constant 8.315 J/mole/K
- Another Eq. Of State is van der Waals Eq.
 - You don't have to know this.

PV = n R T = N k T

- P is the Absolute pressure
 - Measured from Vacuum = 0
 - Gauge Pressure = Vacuum Atmospheric
 - Atmospheric = 14.7 lbs/sq in = 10^5 N/m
 - V is the volume of the system in m³
 - often the system is in cylinder with piston
 - Force on the piston does work on world



PV = n R T = N k T chemists vs physicists

Mole View (more Chemical) = nRT
 – R is gas constant 8.315 J/mole/K

- Molecular View (physicists) = NkT
 - N is number of molecules in system
 - K is Boltzmann's Constant 1.38x10⁻²³ J/K

Using PV=nRT

• Recognize: it relates state variables of a gas

- Typical Problems
 - Lift of hot air balloon
 - Pressure change in heated can of tomato soup
 - Often part of work integral

Heat and Work are Processes

- Processes accompany/cause state changes
 - Work along particular path to state B from A
 - Heat added along path to B from A

- Processes are not state variables
 - Processes change the state!
 - But Eq. Of State generally obeyed

Ideal Gas Law Derivation: Assumptions

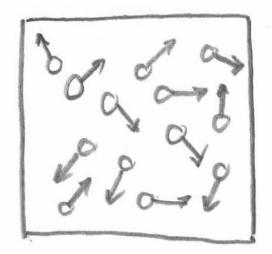
- Gas molecules are hard spheres without internal structure
- Molecules move randomly
- All collisions are elastic
- Collisions with the wall are elastic and instantaneous

Gas Properties

- N number of atoms in volume
- n_m moles in volume
- m is atomic mass $({}^{12}C = 12)$
- mass density $\rho = \frac{m_T}{V} = \frac{nm}{V} = \frac{n_m N_A m}{V}$
- Avogadro's Number $N_A = 6.02 \times 10^{23} molecules \cdot mole^{-1}$

Motion of Molecules

- Assume all molecules have the same velocity (we will drop this latter)
- The velocity distribution is isotropic

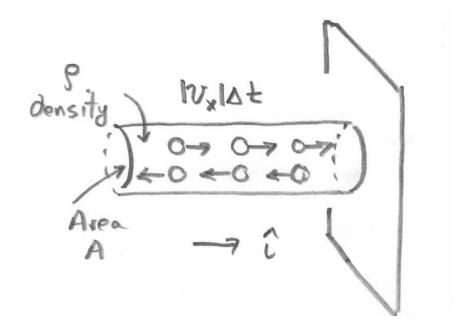


Collision with Wall

• Change of $\hat{\mathbf{i}}: \Delta p_x = -mv_{x,f} - mv_{x,0}$ momentum $\hat{\mathbf{j}}: \Delta p_{y} = mv_{y,f} - mv_{y,0}$ $-v_{y,0}$ $v_x \equiv v_{x,f} = v_{x,0}$ • Elastic collision $\hat{\mathbf{i}}: \Delta p_x = -2mv_x$ Conclusion

Momentum Flow Tube

- Consider a tube of cross sectional area A and length $v_x \Delta t$
- In time Δt half the molecules in tube hit wall



 Mass enclosed that hit wall

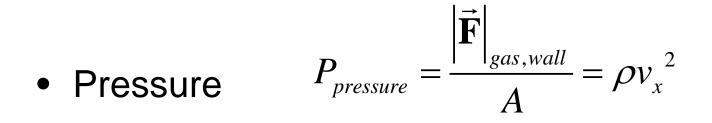
$$\Delta m = \frac{\rho}{2} Volume = \frac{\rho}{2} A v_x \Delta t$$

Pressure on the wall

Newton's Second Law

$$\vec{\mathbf{F}}_{wall,gas} = \frac{\Delta \vec{\mathbf{p}}}{\Delta t} = \frac{-2\Delta m v_x}{\Delta t} \hat{\mathbf{i}} = -\frac{2\rho A v_x^2 \Delta t}{2\Delta t} \hat{\mathbf{i}} = -\rho A v_x^2 \hat{\mathbf{i}}$$

• Third Law $\vec{\mathbf{F}}_{gas,wall} = -\vec{\mathbf{F}}_{wall,gas} = \rho A v_x^2 \hat{\mathbf{i}}$



Average velocity

- Replace the square of the velocity with the average of the square of the velocity $\left(v_x^2\right)_{ave}$
- random motions imply

$$(v^2)_{ave} = (v_x^2)_{ave} + (v_y^2)_{ave} + (v_z^2)_{ave} = 3(v_x^2)_{ave}$$

• Pressure

$$P_{pressure} = \frac{1}{3} \rho \left(v^2 \right)_{ave} = \frac{2}{3} \frac{n_m N_A}{V} \frac{1}{2} m \left(v^2 \right)_{ave}$$

Degrees of Freedom in Motion

- Three types of degrees of freedom for molecule
- 1. Translational
- 2. Rotational
- 3. Vibrational
- Ideal gas Assumption: only 3 translational degrees of freedom are present for molecule with no internal structure

Equipartition theorem: Kinetic energy and temperature

• Equipartition of Energy Theorem

$$\frac{1}{2}m(v^2)_{ave} = \frac{(\text{#degrees of freedom})}{2}kT = \frac{3}{2}kT$$

- Boltzmann Constant $k = 1.38 \times 10^{-23} J \cdot K^{-1}$
- Average kinetic of gas molecule defines kinetic temperature

Ideal Gas Law

• Pressure

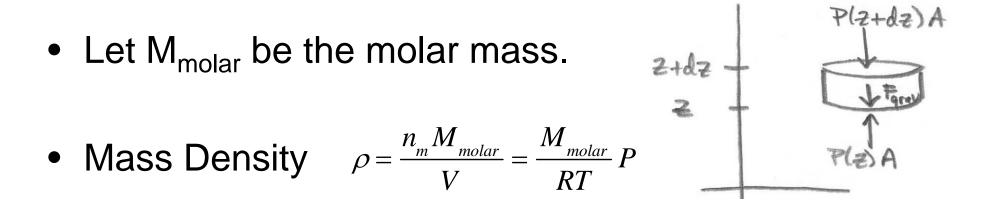
$$p_{pressure} = \frac{2}{3} \frac{n_m N_A}{V} \frac{1}{2} m \left(v^2 \right)_{ave} = \frac{2}{3} \frac{n_m N_A}{V} \frac{3}{2} kT = \frac{n_m N_A}{V} kT$$

- Avogadro's Number $N_A = 6.022 \times 10^{23} \text{ molecules} \cdot \text{mole}^{-1}$
- Gas Constant $R = N_A k = 8.31 J \cdot mole^{-1} \cdot K^{-1}$

• Ideal Gas Law $pV = n_m RT$

Ideal Gas Atmosphere

• Equation of State $PV = n_m RT$



Newton's Second Law

$$A\left(P\left(z\right)-P\left(z+\Delta z\right)\right)-\rho gA\Delta z=0$$

Isothermal Atmosphere

- Pressure Equation
- Differential equation
- Integration
- Solution
- Exponentiate

$$\frac{P(z + \Delta z) - P(z)}{\Delta z} = \rho g$$

$$\frac{dP}{\Delta z} = -\rho g = -\frac{M_{molar}g}{RT} P$$

$$\int_{P_0}^{P(z)} \frac{dp}{p} = -\int_{z=0}^{z} \frac{M_{molar}g}{RT} dz'$$

$$ln\left(\frac{P(z)}{P_0}\right) = -\frac{M_{molar}g}{RT} z$$

$$P(z) = P_0 \exp\left(-\frac{M_{molar}g}{RT} z\right)$$