Final Review \#4

Experiments
 Statistical Mechanics, Kinetic Theory Ideal Gas Thermodynamics Heat Engines Relativity

8.01t
December 8, 2004

Review of 8.01T Experiments

Experiment 01: Introduction to DataStudio

Position of hand motion

Where is the velocity zero? Where does the magnitude of the velocity reach its maximum?

Experiment 02: Projectile Motion

Reminder on projectile motion

- Horizontal motion (x) has no acceleration.
a Vertical motion (y) has acceleration-g.
- Horizontal and vertical motion may be treated separately and the results combined to find, for example, the trajectory or path.
\square Use the kinematic equations for x and y motion:

$$
\begin{aligned}
& x(t)=x_{0}+v_{0} t \cos \theta \\
& y(t)=y_{0}+v_{0} t \sin \theta-\frac{1}{2} g t^{2}
\end{aligned}
$$

Experimental setup

- Coordinate system

$$
x_{0}=0 \quad y_{0}=0
$$

$$
y(x)=x \tan \theta-\frac{g}{2 v_{0}^{2} \cos ^{2} \theta} x^{2}
$$

- Impact point:
> Height: h
> Horizontal displacement: r
- With chosen coordinate system:
> Height: $y=-h$
> Horizontal displacement: $x=r$
- Solve above equation for g :

$$
g=\frac{2 v_{0}^{2} \cos ^{2} \theta}{r^{2}}[r \tan \theta+h]
$$

Experiment 03: Modeling
 Forces

Experimental setup

- Measuring the magnet gap h_{2} h_{1}

\square Measure heights h_{1} and h_{2} with your ruler, and subtract them. (h_{1} will be constant.)
- The two magnets stuck together weigh 6.0 pennies. The plastic coin holder weighs 4.0 pennies.
a Enter the gap (in mm) and the total weight (in pennies) into a table in DataStudio.
- The gap goes in the X (left) column of the table.

Exponential fit

- Carry out a user-defined fit of:

$$
y=A e^{-C x}
$$

\square Record A and C for part (a) and answer question about the characteristic length I over which the force drops by a factor 1/e

Semi-log plot and linear fit II

Experiment 04: Uniform Circular Motion

Goal

a Study a conical pendulum and measure the force required to produce ${ }^{\prime}$
ω

\square Extract from measurement of angular frequency and r_{m} the spring constant k and pre-tension F_{0}

- Understand how an instability in this system occurs at a critical frequency ω_{0} and how to extract ω_{0} from your measurements

Analysis of conical pendulum

$$
\begin{gathered}
\sum_{i} F_{i}=m a_{i} \\
\hat{r}-F_{s} \cdot \sin \theta=-m r_{m} \omega^{2} \\
\hat{k}-m g+F_{s} \cos \theta=0
\end{gathered}
$$

From my measurements of $r_{m}, \omega: \theta \approx 88^{\circ}$
Therefore: Ignore effect of gravitation!

$$
\tan \theta=\frac{r_{m} \omega^{2}}{g}
$$

$$
F_{s}=\Delta r \cdot k=\left(r_{m}-r_{0}\right) k=m r_{m} \omega^{2}
$$

$$
r_{m}=\frac{r_{0}}{1-\frac{m \omega^{2}}{k}}=\frac{r_{0}}{1-\frac{\omega^{2}}{\omega_{c}^{2}}}
$$

Fitting

Perform a User-Defined fit to: $A /\left(1-x^{*} x /(B * B)\right)$

Experiment 05A: Static equilibrium

Goal

When a weight is suspended by two strings in the center as shown in the photograph below, the tension is given as follows:

$$
T=\frac{M g}{2 \sin \theta}
$$

T

$$
\mathrm{Mg}
$$

Goal: Measure T for several values of θ using measurements of, H (fixed), to verify the equation above!

Analyzing data

- Calculate $\sin \theta$ from your vertical drop measurements (see write up).
- Plot force on y axis, $\sin \theta$ on x axis.
- Fit $y=A / x$ (User-defined fit) to your data.

Experiment 06: Work, Energy and the Harmonic Oscillator

- Use the heavy spring on the force sensor.
- Put two 250 g weights in the cart.
- Clip motion sensor to other end of track, and support it on a piece of 2×4.

Measurement Results

Faraph 1

- [

- Position vs. Time: Measure maximum heights either side of $2^{\text {nd }}$ bounce, calculate loss of potential energy, and friction force. Enter in table!
- Force vs. Time: Expand force peak around $2^{\text {nd }}$ bounce.

Finding Acceleration Up \& Down

Linear fit to find $a_{\text {up }}$

Linear fit to find $a_{\text {down }}$

Experiment 07: Momentum and Collisions

Equipment setup

- Use the lighter spring on the force sensor.
- Clip the motion sensor to the end of the track.
- Level the track.
\square Place Target cart at rest about 10 cm from the spring.
- Place Incident cart about $16-20 \mathrm{~cm}$ from motion sensor.
- Note: Velcro facing = inelastic and magnets facing = elastic.
- Roll incident cart just hard enough to come back to its starting point. Practice this first before you take your data!
- Make measurements with different weights of incident and target cart.

Graph 1

Two equal mass carts A and B collide.
This is X_{A} vs. time.

1. Along line $A B$?
2. At point B ?
3. Along line $B C$?
4. At point C ?
5. Along line $C D$?

At approximately what time does cart B hit the spring?

Graph 2

Two equal mass carts A and B collide.
This is V_{A} vs. time.

1. Along line $A B$?
2. Along line $B C$?
3. Along line $C D$?
4. Along line $D E$?
5. Along line EF?

Graph 3

A cart of mass 0.25 kg collides with a spring on the force sensor. Here is the force during the collision. The fit is to:
$A^{*} \sin (2 \pi(x-C) / T)$

What does the area under the curve tell you?
What can you learn from the parameter T?

Experiment 08: Physical Pendulum

Goals

- Investigate the oscillation of a real (physical) pendulum and compare to an ideal (point mass) pendulum.
- Angular frequency calculation:
$\vec{\tau}=I \vec{\alpha} \quad-l m g \sin \theta=I \frac{d^{2} \theta}{d t^{2}}$
$\frac{d^{2} \theta}{d t^{2}}+\frac{l m g}{I} \sin \theta=0$
With $\sin \theta \simeq \theta: \omega=\sqrt{\frac{l m g}{I}} \quad \frac{d^{2} \theta}{d t^{2}}+\frac{l m g}{I} \theta=0$

- Practice calculating moments of inertia, using them, and solving the $\tau=I$ a equation of motion.

Understanding the graphs

Position vs. time data from the motion sensor.

What is happening:

1. Along the top plateaus marked by A?
2. At the downward peaks marked by B ?

How do you use this graph to find the period of oscillation of the pendulum?

Experiment 09: Angular momentum

Measure rotor I_{R}

- Plot only the generator voltage for rest of experiment.
- Use a 55 gm weight to accelerate the rotor.
- Settings:
> Sensitivity: Low
- Sample rate 500 Hz .
> Delayed start: None
> Auto Stop: 4 seconds
- Start DataStudio and let the weight drop.

Understand graph output to measure I_{R}

\square Generator voltage while measuring I_{R}. What is happening:

1. Along line $A-B$?
2. At point B ?
3. Along line $B-C$?
a How do you use this graph to find I_{R} ?

Measure I_{R} results

- Measure and record $\alpha_{\text {up }}$ and $\alpha_{\text {down }}$.
a For your report, calculate I_{R} :

$$
I_{R}\left|\alpha_{d o w n}\right|=\left|\tau_{f}\right| \quad I_{R}=\frac{m r\left(g-r \alpha_{u p}\right)}{\alpha_{u p}+\left|\alpha_{d o w n}\right|}
$$

Experiment 10: Energy transformation

Equipment setup

- Mechanical equivalent to heat: A motor applies a known friction torque τ_{f} at a known ω to a plastic
jar with a known mass of $\mathrm{H}_{2} \mathrm{O}$.
- Electrical equivalent to heat: Apply voltage (2.5V) across a resistor (2.50 hms) and use resulting electrical heat: Resistor $c=\frac{\Delta V}{m(d T / d t)}$
is connected to right pair of posts.
- How can one double the temperature increase in both setups for a fixed amount of time?

$$
\Delta V=R \cdot I
$$

REVIEW \#4

Statistical Mechanics, Kinetic Theory Ideal Gas

 Thermodynamics Heat Engines Relativity
Statistical Mechanics and Thermodynamics

- Thermodynamics Old \& Fundamental
- Understanding of Heat (I.e. Steam) Engines
- Part of Physics Einstein held inviolate
- Relevant to Energy Crisis of Today
- Statistical Mechanics is Modern Justification
-Based on mechanics: Energy, Work, Momentum
-Ideal Gas model gives observed thermodynamics
- Bridging Ideas

Temperature (at Equilibrium) is Average Energy
Equipartition - as simple/democratic as possible

Equation of State

- A condition that the system must obey
- Relationship among state variables
- Example: Perfect Gas Law
- Found in 18th Century Experimentally
$-\mathrm{pV}=\mathrm{NkT}=\mathrm{nRT}$
- K is Boltzmann's Constant $1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
- R is gas constant $8.315 \mathrm{~J} / \mathrm{mole} / \mathrm{K}$

PV = n R T = N k T chemists vs physicists

- Mole View (more Chemical) = nRT
- R is gas constant $8.315 \mathrm{~J} / \mathrm{mole} / \mathrm{K}$
- Molecular View (physicists) = NkT
$-N$ is number of molecules in system
- K is Boltzmann's Constant $1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$

Ideal Gas Law Derivation: Assumptions

- Gas molecules are hard spheres without internal structure
- Molecules move randomly
- All collisions are elastic
- Collisions with the wall are elastic and instantaneous

Gas Properties

- N number of atoms in volume, m mass of molecule
- n_{m} moles in volume
- $\mathrm{M}_{\text {molar }}$ is atomic mass $\left({ }^{12} \mathrm{C}=12\right)$
- mass density

$$
\rho=\frac{m_{T}}{V}=\frac{n_{m} M_{\text {molar }}}{V}=\frac{n_{m} N_{A} m}{V}
$$

- Avogadro’s Number

$$
N_{A}=6.02 \times 10^{23} \text { molecules } \cdot \text { mole }^{-1}
$$

Pressure of a Gas: Microscopic to Macroscopic
 Pressure
 $$
P_{\text {pressure }}=\frac{|\overrightarrow{\mathbf{F}}|_{\text {gas, wall }}}{A}=\frac{1}{3} \rho\left\langle v^{2}\right\rangle
$$

Root Mean Square Velocity $\quad v_{r m s}=\sqrt{\frac{3 P}{\rho}}$
Equipartition of Energy
Theorem

$$
\frac{1}{2} m\left(v^{2}\right)_{\text {ave }}=\frac{3}{2} k T
$$

Ideal Gas Eq. Of State

$$
P=\frac{n_{m} N_{A} k T}{V}=\frac{n_{m} R T}{V}
$$

Degrees of Freedom in Motion

- Three types of degrees of freedom for molecule

1. Translational
2. Rotational
3. Vibrational

- Ideal gas Assumption: only 3 translational degrees of freedom are present for molecule with no internal structure

Equipartition of Energy: Kinetic Energy and Temperature

- Equipartition of Energy Theorem

$$
\frac{1}{2} m\left(v^{2}\right)_{\text {ave }}=\frac{(\# \text { degrees of freedom })}{2} k T=\frac{3}{2} k T
$$

- Boltzmann Constant $\quad k=1.38 \times 10^{-23} J \cdot K^{-1}$
- Average kinetic of gas molecule defines kinetic temperature

Heat

- If two bodies are in contact but initially have different temperatures, heat will transfer or flow between them if they are brought into contact.
- heat is the energy transferred, given the symbol Q.

Temperature and Equilibrium

- Temperature is Energy per Degree of Freedom
- Heat flows form hotter to colder object Until temperatures are equal
Faster if better thermal contact
Even flows at negligible Δt (for reversible process)
- The Unit of Temperature is the Kelvin Absolute zero (no energy) is at 0.0 K Ice melts at 273.15 Kelvin (0.0 C)
Fahrenheit scale is arbitrary

State Variables of System

- State Variables - Definition

Measurable Static Properties
Fully Characterize System (if constituents known)
e.g. Determine Internal Energy, compressibility

Related by Equation of State

- State Variables: Measurable Static Properties
- Temperature - measure with thermometer
- Volume (size of container or of liquid in it)
- Pressure (use pressure gauge)
- Quantity: Mass or Moles or Number of Molecules
- Of each constituent or phase (e.g. water and ice)

Heat and Work are Processes

- Processes accompany/cause state changes
- Work along particular path to state B from A
- Heat added along path to B from A
- Processes are not state variables
- Processes change the state!
- But Eq. Of State generally obeyed

Thermodynamic Systems

$\mathrm{T}, \mathrm{p}, \mathrm{V}, \mathrm{N}$ measured
 Work W on world Heat Q

The state variables are changed only in response to Q and W

No other work or heat enters

Work

Find Work if piston moves $\Delta \mathbf{x}$:

$$
W=F \Delta x=p A \Delta x=p \Delta V
$$

In General : $\quad W_{f i}=\int_{i}^{f} p(V, T) d V$

Variables in First Law

- Q is the Heat Added
- Could find from Temperature Gradient
- But need Heat Conductivity and Area
- Generally determine from First Law
- W is the Work done by system
- Equal to pDV
- U is the Internal Energy of system
- It is determined by state variables
- From equipartition, proportional to T

Internal Energy

Based on Equipartition:

-each coordinate of each particle

$$
\begin{aligned}
& 1 / 2 \mathrm{~m}\left\langle\mathrm{v}_{\mathrm{x}}^{2}\right\rangle=1 / 2 \mathrm{~m}\left\langle\mathrm{v}_{\mathrm{y}}^{2}\right\rangle=1 / 2 \mathrm{k}_{\mathrm{B}} \mathrm{~T} \\
& 1 / 2 \mu\left\langle\mathrm{v}_{\text {rel }}{ }^{2}\right\rangle=1 / 2 \mathrm{k}_{\mathrm{B}} \mathrm{~T} . . \text { molecule }
\end{aligned}
$$

For an ideal monatomic gas:

$$
U(T)=3 / 2 \mathrm{NkT}
$$

For an ideal diatomic molecular gas:

$$
U(T)=5 / 2 \mathrm{Nk} \mathrm{~T} \text { (no vibration) }
$$

Thermodynamic cycles

A thermodynamic cycle is any process that brings a system back to its original state.

The cycle involves a path in state space over which various processes may act.

Addition/Removal of heat and work are typical processes.

Often the objective is to get work from heat or vice versa, as in a heat engine or heat pump.

Energy Conserved $Q\left(\right.$ in at $\left.T_{2}\right)=W_{\text {cycle }}+Q\left(\right.$ out at $\left.T_{1}\right)$
Heat Engine Efficiency: $\quad \varepsilon=\frac{W_{\text {cycle }}}{Q\left(\text { in at } T_{2}\right)}$

Reversibility of Cycle

We showed that any leg of this cycle is reversible.

Therefore, the entire cycle (heat engine) could operate in reverse

In this case the total Work and the Heat flow will be reversed.

Operated in reverse it is a refrigerator that removes heat at the lower temperature

Or a heat pump delivering heat at the temperature T_{2}

Why Carnot is Maximum

 Say a heat engine exceeded Carnot Limit

Hook it to a perfect gas heat pump with the same T_{1}

Net Effect: Heat $Q_{\text {env }}$ becomes work $W_{\text {net }}$

Second law of Thermodynamics

No process shall have the only result that Heat is turned into Work
or

No process shall have the only result that Heat is transferred from cooler to hotter.

The second law is the formal statement of the irreversibility of Nature on a classical scale: friction can irreversibly convert mechanical energy into heat; nothing can reverse this process.

Postulates of Relativity

Relativity Postulate: All inertial frames are equivalent with respect to all the laws of physics.

Speed of Light Postulate: The speed of light in empty space always has the same value c .

This is really special case of Relativity Postulate since Maxwell's Eqn's predict speed of light.

Alternative Synchronization

- two identical clocks that are at rest in a reference frame at different spatial points will run at identical rates.
- a lamp at the origin emits a pulse of light at time.
- Every point in space has a clock that will begin running when the light pulse reaches it.
- Each clock has been pre-set to the time $t=d / c$ where d is the distance from the clock to the origin and is the speed of light.

- When the light pulse reaches the clock, it begins to run at the same identical rate as all the other clocks.
- All the clocks are now synchronized (also according to Einstein's definition)
- Only good in that coordinate frame

The Relativity of Simultaneity

Events that a synchronous in one reference frame are not synchronous in another reference frame

Simultaneous flashes on the train aren't simultaneous To an observer at rest on ground

Causality

- If event A causes event B, it must be observed to occur before B in any and all reference frames. The time ordering cannot be reversed!
- If a light pulse from A reaches B before event B occurs, then all observers will observe that event A happened first.
- Such events have timelike separation
- Events that are not timelike are spacelike

Time Dilation

Moving clocks run slow.

Time interval $\Delta \mathrm{t}^{\prime}$ between two space-time events measured by muon clock in frame in which muon clock is moving dilates compared to same time as measured in frame in which muon clock is at rest

$$
\Delta t^{\prime}=\gamma \Delta t \quad \gamma=1 / \sqrt{\left(1-v^{2} / c^{2}\right)}
$$

Testing $\mathrm{E}=\mathrm{mc}^{2}$ (by weighing γ-rays)

$$
n+{ }^{32} S \rightarrow{ }^{33} S+\gamma
$$

If $\mathrm{E} \neq \mathrm{mc}^{2}$

Special Relativity results from the relativity postulate and observation of a limiting velocity, c. If $\mathrm{E} \neq \mathrm{mc}^{2}$ possibly:
Yes, there is a preferred frame
Michelson-Morley, Hughes-Drever look for anisotropy and place limits assuming CMB is preferred frame.
(see M.P. Haugan and C.M. Will, Physics Today, May 1987)

c doesn't equal $\mathrm{C}_{\text {light }}$
Limited since high energy protons not radiating Cherenkov radiation Einstein's logic faulty

Unlikely; it’s been widely checked
Our experiments are wrong
We were very careful to check systematics BEFORE comparing with NIST New physics in our experiments

There is no evidence from our experiment

Newtonian Mechanics

Explain and predict phenomena ranging from scale of 100's atoms to Intergalactic distances

Theory built on Two Foundations

1. Principles of Dynamics embodied in the concept of Force Laws (based on experiments) and Newton's Three Laws of Motion
2. Conservation Laws: Momentum, Energy, and Angular Momentum

Constants and Fundamental Scales

1. Speed of Light

$$
c=2.99792458 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}
$$

2. Universal Gravitational Constant

$$
G=6.6726 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{~kg}^{-2}
$$

3. Boltzmann's Constant

$$
k=1.3806503 \times 10^{-23} \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~K}^{-1}
$$

4. Planck's Constant

$$
h=6.626068 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}
$$

Fundamental Scales: Planck Mass

Mass $\quad \operatorname{dim}\left[\left(\frac{\text { hc }}{G}\right)^{1 / 2}\right]=\left(\frac{(\text { mass })(\text { length })^{3}}{(\text { time })^{2}} / \frac{(\text { length })^{3}}{(\text { mass })(\text { time })^{2}}\right)^{1 / 2}=($ mass $)$

$$
\left(\frac{h c}{G}\right)^{1 / 2}=\left(\frac{\left(6.626068 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}\right)\left(2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)}{\left(6.6726 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{~kg}^{-2}\right)}\right)^{1 / 2}=5.456 \times 10^{-8} \mathrm{~kg}
$$

Fundamental Scales: Planck Time

Time

$$
\begin{aligned}
& \operatorname{dim}\left[\left(\frac{h c}{G}\right)^{1 / 2}\right]=\left(\frac{(\text { mass })(\text { length })^{3}}{(\text { time })^{2}} / \frac{(\text { length })^{3}}{(\text { mass })(\text { time })^{2}}\right)^{1 / 2}=(\text { mass }) \\
& \operatorname{dim}\left[\frac{G}{c^{3}}\right]=\frac{(\text { time })}{(\text { mass })} \quad \operatorname{dim}\left[\frac{G}{c^{3}}\left(\frac{h c}{G}\right)^{1 / 2}\right]=\operatorname{dim}\left[\left(\frac{h G}{c^{5}}\right)^{1 / 2}\right]=(\text { time }) \\
& \left(\frac{h G}{c^{5}}\right)^{1 / 2}=\left(\frac{\left(6.626068 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}\right)\left(6.6726 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{~kg}^{-2}\right)}{\left(2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)^{5}}\right)^{1 / 2}=1.35 \times 10^{-43} \mathrm{~s}
\end{aligned}
$$

Fundamental Scales: Planck Length

Length $\quad \operatorname{dim}\left[\left(\frac{\text { hc }}{G}\right)^{1 / 2}\right]=\left(\frac{(\text { mass })(\text { length })^{3}}{(\text { time })^{2}} / \frac{(\text { length })^{3}}{(\text { mass })(\text { time })^{2}}\right)^{1 / 2}=($ mass $)$

$$
\begin{gathered}
\operatorname{dim}\left[\frac{G}{c^{2}}\right]=\frac{(\text { length })}{(\text { mass })} \quad \operatorname{dim}\left[\left(\frac{h G}{c^{3}}\right)^{1 / 2}\right]=\text { length } \\
\left(\frac{h G}{c^{3}}\right)^{1 / 2}=\left(\frac{\left(6.626068 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}\right)\left(6.6726 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{~kg}^{-2}\right)}{\left(2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)^{3}}\right)^{1 / 2}=4.071 \times 10^{-35} \mathrm{~m}
\end{gathered}
$$

Fundamental Scales: Planck Temperature

Temperature $\quad \operatorname{dim}\left[\frac{G}{c^{3}}\left(\frac{h c}{G}\right)^{1 / 2}\right]=\operatorname{dim}\left[\left(\frac{h G}{c^{5}}\right)^{1 / 2}\right]=($ time $)$
$\operatorname{dim}[h / k]=($ energy $)($ time $) /($ energy $) \cdot\left(\right.$ temp $\left.^{-1}\right)=($ time $)($ temp $)$

$$
\begin{gathered}
\operatorname{dim}\left[\frac{h}{k} / \frac{G}{c^{3}}\left(\frac{h c}{G}\right)^{1 / 2}\right]=(t e m p) \\
\frac{h}{k} / \frac{G}{c^{3}}\left(\frac{h c}{G}\right)^{1 / 2}=3.55499 \times 10^{32} \mathrm{~K}
\end{gathered}
$$

Limits of Newtonian Mechanics

- Special Relativity: Rapidly moving objects when $v / c \rightarrow 1$
- Quantum Mechanics: Atomic and Molecular Scales
- General Relativity: Non-Euclidian Structure of Universe
- Statistical Mechanics: Large Number of Particles
- Classical Chaos: Initial Conditions don’t predict future
- Quantized Gravity: String Theory, Planck Length:

