Nelcome 70 Physics 8.02T

For now, please sit anywhere, 9 to a table

Class 1: Outline

Hour 1: Why Physics? Why Studio Physics? (& How?) Vector and Scalar Fields Hour 2: Gravitational fields **Electric fields**

Why Physics?

Why Study Physics?

Understand/appreciate nature

- Lightning
- Soap Films
- Butterfly Wings
- Sunsets

Why Study Physics? Electromagnetic phenomena led directly to Einstein's discovery of the nature of

space and time, see his

paper ON THE ELECTRODYNAMICS OF MOVING BODIES

A. Einstein June 30, 1905

In the last class of the term before the review, we will explain to you how this comes about

Why Study Physics?

- Understand/Appreciate Nature
- Understand Technology
 § Electric Guitar
 § Ground Fault Interrupts
 § Microwave Ovens
 § Radio Towers

Why Study Physics?

- Understand/Appreciate Nature
- Understand Technology
- Learn to Solve Difficult Problems
- It's Required

Why Studio Physics?

Why The TEAL/Studio Format?

Problems with Large Lectures:

Lecture/recitations are passive No labs → lack of physical intuition E&M is abstract, hard to visualize

TEAL/Studio Addresses Problems: Lectures → Interactive, Collaborative Learning Incorporates desk top experiments Incorporates visualization/simulations

Bottom Line: Learn More, Retain More, Do Better

Why The TEAL/Studio Format?

By standard assessment measures, TEAL shows a factor of two increase in learning gains as compared to lecture/recitation format

(see Dori and Belcher, "How Does TEAL Affect Student Learning of E&M Concepts?", *Journal of the Learning Sciences* 14(2) 2004.)

Bottom Line: Learn More, Retain More, Do Better

Overview of TEAL/Studio

Collaborative Learning Groups of 3, Tables of 9 You teach, you discuss, you learn In-Class Problem Solving **Desktop Experiments Teacher-Student Interaction** Visualizations **PRS** Questions

Personal Response System (PRS) Question: Physics Experience

Pick up the nearest PRS (under the table in a holder)

Your Responsibilities

Before Class:

Read Summary

In Class: (You must be present for credit) Problem Solving, Desktop Experiments, PRS

After Class:

Read Study Guide, Review Visualizations Homework (Tuesdays 4:15 pm)

Exams

3 Midterms (45%) + Final (25%)

To Encourage Collaboration, Grades Are NOT Curved In 8.02:

	+		-
Α	>=95	<95 & >=90	<90 & >=85
В	<85 & >=80	<80 & >=75	<75 & >=70
С	<70 & >=67	<67 & >=64	<64 & >=60
D		<60 & >=55	
F		<55	

Honesty Issues

Problem Sets:

- Please work together BUT
- Submit your own, uncopied work

In Class Assignments:

Must sign your own name to submitted work Signing another's name is COD offense

PRS:

Use only your assigned PRS Using another's PRS is COD offense

Physics 8.02 Staff

- Includes:
 - Lecturer Demo Group Graduate TA UGrad TAs

Textbooks

"Introduction to E & M" Liao, Dourmashkin, and Belcher

Supplemental (not required):

Serway & Jewett 6th Edition; Giancoli;

Prefer something else? Let me know!

Important: Find something you can read

Common Questions & Answers

- Dysfunctional Group?
- Must Miss Class?
- Must Miss HW?
- Must Miss Exam?

- Tell Grad TA
- Tell Grad TA
- Tell Grad TA
- Tell me ASAP

Exam dates & times are online Do NOT schedule early vacation departures, etc. without consulting these times!

Any Questions?

Physics is not Math...

...but we use concepts from 18.02

- •Gradients $\vec{\mathbf{E}} = -\nabla V$
- •Path Integrals $\Delta V \equiv -\int_{A}^{B} \vec{\mathbf{E}} \cdot d \vec{\mathbf{s}}$
- Surface Integrals

$$\oint_{S} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{Q_{in}}{\varepsilon_{0}}$$

 $Q = ||| \rho \, dV$

•Volume Integrals

PRS Question: Math Background

Don't Worry!

- For many this is new & I will introduce concepts before use (yell at me if not!)
- Concepts are VERY important mechanics are almost trivial

Math introduction/review:

A time will be scheduled Presentation slides will be posted

So what physics do we learn in 8.02 anyway????

What's the Physics?

8.01: Intro. to basic physics concepts: motion, force, energy, ...

How does matter interact?

Four Fundamental Forces:

Long range: Gravity (8.01 ... Gen.Relativity) Short Range: Strong and Weak Mid Range: Electromagnetic (8.02)

8.02: Electricity and Magnetism

Also new way of thinking...

How do objects interact at a distance?

Fields We will learn about E & M Fields: how they are created & what they effect

Big Picture Summary:

Maxwell $\oint_{S} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{Q_{in}}{\varepsilon_{0}} \qquad \oint_{C} \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} = -\frac{d\Phi_{B}}{dt}$ **Equations:** $\oint_{S} \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = 0 \qquad \oint_{C} \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_{0}I_{enc} + \mu_{0}\varepsilon_{0}\frac{d\Phi_{E}}{dt}$

Lorentz Force: $\vec{\mathbf{F}} = q\left(\vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}}\right)$

Today: Fields In General, then Gravitational & Electric

Scalar Fields

e.g. Temperature: Every location has associated value (number with units)

Scalar Fields - Contours

- Colors represent surface temperature
- Contour lines show constant temperatures

Fields are 3D

T = T(x,y,z)
Hard to visualize
→ Work in 2D

Vector Fields

Vector (magnitude, direction) at every point in space

Example: Wind Velocity Vector Field

Vector Field Examples

Begin with Fluid Flow

Vector Field Examples

Flows With Sources

(http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/vectorfields/02-particleSource/02-ParticleSource_320.html)

Vector Field Examples Flows With Sinks

(http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/vectorfields/01-particleSink/01-ParticleSink_320.html)

Vector Field Examples Circulating Flows

(<u>http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/vectorfields/03-particleCirculate/03-PartCircMotion_320.html</u>)

Visualizing Vector Fields: Three Methods

Vector Field Diagram

Arrows (different colors or length) in direction of field on uniform grid.

Field Lines

Lines tangent to field at every point along line

Grass Seeds

Textures with streaks parallel to field direction

All methods illustrated in

http://ocw.mit.edu/ans7870/8/8.02T/f04/visualization s/electrostatics/39-pcharges/39twocharges320.html

Vector Fields – Field Lines

- Direction of field line at any point is tangent to field at that point
- Field lines never cross each other

PRS Question: Vector Field

In General: Don't pick up unit until ready to answer Then I'll know when class is ready

Vector Fields – "Grass Seeds"

Source/Sink

Circulating

Although we don't know absolute direction, we can determine relative direction

PRS Questions: "Grass Seed" Visualizations

Weird Field Contest

Purpose

Gain familiarity with vector fields Winner

Displayed in MIT Museum Exhibit Due Date

Turn in with 2nd PSet in Separate Box

Another Vector Field: Gravitational Field

M : Mass of Earth

Example Of Vector Field: Gravitation

Gravitational Field:

$$\vec{\mathbf{g}} = -G\frac{M}{r^2}\hat{\mathbf{r}}$$

Created by M

$$\vec{\mathbf{F}}_{g} = m\vec{\mathbf{g}}$$

Felt by m

 $\hat{\mathbf{r}}$: unit vector from *M* to *m*

$$\hat{\mathbf{r}} = \frac{\vec{\mathbf{r}}}{r} \Rightarrow \vec{\mathbf{g}} = -G\frac{M}{r^3}\vec{\mathbf{r}}$$

M : Mass of Earth

In Class Problem

Find the gravitational field \vec{g} at point P

Bonus: Where would you put another mass m to make the field \vec{g} become 0 at P?

NOTE: Solutions will be posted within one day of class

From Gravitational to Electric Fields

Electric Charge (~Mass)

Two types of electric charge: positive and negative Unit of charge is the *coulomb* [C]

Charge of electron (negative) or proton (positive) is $\pm e$, $e = 1.602 \times 10^{-19} C$

Charge is quantized

$$Q = \pm Ne$$

Charge is conserved

$$n \rightarrow p + e^- + \overline{\nu} \qquad e^+ + e^- \rightarrow \gamma + \gamma$$

Electric Force (~Gravity)

The electric force between charges q_1 and q_2 is

(a) repulsive if charges have same signs(b) attractive if charges have opposite signs

Like charges repel and opposites attract !!

Coulomb's Law

$$k_e = \frac{1}{4\pi\varepsilon_0} = 8.9875 \times 10^9 \text{ N m}^2/\text{C}^2$$

 $\hat{\mathbf{r}}$: unit vector from q_1 to q_2

$$\hat{\mathbf{r}} = \frac{\vec{\mathbf{r}}}{r} \implies \vec{\mathbf{F}}_{12} = k_e \frac{q_1 q_2}{r^3} \vec{\mathbf{r}}$$

Coulomb's Law: Example

$$\vec{\mathbf{F}}_{32} = ?$$
$$\vec{\mathbf{r}}_{32} = \left(\frac{1}{2}\hat{\mathbf{i}} - \frac{\sqrt{3}}{2}\hat{\mathbf{j}}\right) \mathbf{m}$$
$$r = 1\mathbf{m}$$

$$\vec{\mathbf{F}}_{32} = k_e q_3 q_2 \frac{\vec{\mathbf{r}}}{r^3} = \left(9 \times 10^9 \,\mathrm{N} \,\mathrm{m}^2 / \mathrm{C}^2\right) (3\mathrm{C}) (3\mathrm{C}) \frac{\frac{1}{2} \left(\hat{\mathbf{i}} - \sqrt{3} \,\hat{\mathbf{j}}\right) \mathrm{m}}{(1\mathrm{m})^3}$$
$$= \frac{81 \times 10^9}{(\hat{\mathbf{i}} - \sqrt{3} \,\hat{\mathbf{j}})} \mathrm{N}$$

2

The Superposition Principle

Many Charges Present: Net force on any charge is vector sum of forces from other individual charges

Electric Field (~g)

The electric field at a point is the force acting on a test charge q_0 at that point, divided by the charge q_0 :

http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/electrostatics/04-MovingChargePosElec/04-MovChrgPosElec_f223_320.html

Superposition Principle

The electric field due to a collection of *N* point charges is the vector sum of the individual electric fields due to each charge

Summary Thus Far

Mass M Charge $q(\pm)$

PRS Question: Electric Field