Class 12: Outline

Hour 1:

 Working with Circuits Expt. 4. Part I: Measuring V, I, R
Hour 2:

RC Circuits
Expt. 4. Part II: RC Circuits

Last Time: Resistors \& Ohm's Law

Resistors \& Ohm's Law

Measuring Voltage \& Current

Measuring Potential Difference

A voltmeter must be hooked in parallel across the element you want to measure the potential difference across

Voltmeters have a very large resistance, so that they don't affect the circuit too much

Measuring Current

An ammeter must be hooked in series with the element you want to measure the current through

Ammeters have a very low resistance, so that they don't affect the circuit too much

Measuring Resistance

An ohmmeter must be hooked in parallel across the element you want to measure the resistance of

Here we are measuring R_{1}
Ohmmeters apply a voltage and measure the current that flows. They typically won't work if the resistor is powered (connected to a battery)

Experiment 4: Part 1: Measuring V, I \& R

RC Circuits

(Dis)Charging a Capacitor

1. When the direction of current flow is toward the positive plate of a capacitor, then

$$
I=+\frac{d Q}{d t}
$$

2. When the direction of current flow is away from the positive plate of a capacitor, then

$$
I=-\frac{d Q}{d t}
$$

Charging A Capacitor

What happens when we close switch S?

Charging A Capacitor

1. Arbitrarily assign direction of current
2. Kirchhoff (walk in direction of current):

$$
\sum_{i} \Delta V_{i}=\varepsilon-\frac{Q}{C}-I R=0
$$

Charging A Capacitor

$$
\begin{aligned}
& \text { 位 } \varepsilon-\frac{Q}{C}=\frac{d Q}{d t} R \Rightarrow \frac{d Q}{Q-C \varepsilon}=-\frac{d t}{R C} \\
& \int_{0}^{Q} \frac{d Q}{Q-C \varepsilon}=-\int_{0}^{t} \frac{d t}{R C}
\end{aligned}
$$

A solution to this differential equation is:

$$
Q(t)=C \mathcal{E}\left(1-e^{-t / R C}\right)
$$

$R C$ is the time constant, and has units of seconds

Charging A Capacitor

$$
Q=C \mathcal{E}\left(1-e^{-t / R C}\right)
$$

$$
I=\frac{d Q}{d t}=\frac{\varepsilon}{R} e^{-t / R C}
$$

PRS Questions: Charging a Capacitor

Discharging A Capacitor

What happens when we close switch S?

Discharging A Capacitor

$$
\sum_{i} \Delta V_{i}=\frac{q}{C}-I R=0
$$

Discharging A Capacitor

$$
\frac{d q}{d t}+\frac{q}{R C}=0 \Rightarrow \int_{Q_{0}}^{Q} \frac{d q}{q}=-\int_{0}^{t} \frac{d t}{R C}
$$

$$
Q(t)=Q_{o} e^{-t / R C}
$$

General Comment: RC

All Quantities Either:

$\operatorname{Value}(t)=$ Value $_{\text {Final }}\left(1-e^{-t / \tau}\right) \quad \operatorname{Value}(t)=$ Value $_{0} e^{-t / \tau}$
τ can be obtained from differential equation (prefactor on $d / d t$) e.g. $\tau=R C$

Exponential Decay

Value
 Value $_{0}{ }_{0}\left(\mathrm{t}_{0}, \mathrm{v}_{0}\right)$
 $\left(t_{0}+\tau, V_{0} / e\right)$
 τ

$\operatorname{Value}(t)=$ Value $_{0} e^{-t / \tau}$

Very common curve in physics/nature

How do you measure τ ?

1) Fit curve (make sure you exclude data at both ends)
2) a) Pick a point
b) Find point with y value down by e
c) Time difference is τ

Demonstrations: RC Time Constants

Experiment 4:
 Part II: RC Circuits

PRS Question: Multiloop circuit with Capacitor in One Loop

