Lecture 23: Outline

Hour 1:
Concept Review / Overview
PRS Questions - possible exam questions
Hour 2:
Sample Exam

Yell if you have any questions

7:30-9 pm Tuesday

Exam 2 Topics

- DC Circuits
- Current \& Ohm's Law (Macro- and Microscopic)
- Power
- Kirchhoff's Loop Rules
- Charging/Discharging Capacitor (RC Circuits)
- Magnetic Fields
- Force due to Magnetic Field (Lorentz Force)
- Magnetic Dipoles
- Generating Magnetic Fields
- Biot-Savart Law \& Ampere's Law

General Exam Suggestions

- You should be able to complete every problem
- If you are confused, ask
- If it seems too hard, you aren't thinking enough
- Look for hints in other problems
- If you are doing math, you're doing too much
- Read directions completely (before \& after)
- Write down what you know before starting
- Draw pictures, define (label) variables
- Make sure that unknowns drop out of solution
- Don't forget units!

What You Should Study

- Review Friday Problem Solving (\& Solutions)
- Review In Class Problems (\& Solutions)
- Review PRS Questions (\& Solutions)
- Review Problem Sets (\& Solutions)
- Review PowerPoint Presentations
- Review Relevant Parts of Study Guide (\& Included Examples)

Current \& Ohm's Law

E

$$
\begin{aligned}
I & =\frac{d Q}{d t} \\
\overrightarrow{\mathbf{J}} & \equiv \frac{I}{A} \hat{\mathbf{I}}
\end{aligned}
$$

Ohm's Laws $\overrightarrow{\mathbf{E}}=\rho \overrightarrow{\mathbf{J}}=(1 / \sigma) \overrightarrow{\mathbf{J}}$

$\Delta V=I R$

$$
R=\frac{\rho \ell}{A}
$$

Series vs. Parallel

Series

- Current same
- Voltages add

$$
\begin{aligned}
R_{s}= & R_{1}+R_{2} \\
\frac{1}{C_{s}}= & \frac{1}{C_{1}}+\frac{1}{C_{2}} \\
& \frac{1}{R_{P}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\
& C_{P}=C_{1}+C_{2}
\end{aligned}
$$

Parallel

- Currents add
- Voltages same

PRS Questions: Light Bulbs

Class 10

Current, Voltage \& Power

Capacitor ${ }^{I}$

$$
\frac{+Q}{\Delta V=-Q / C}
$$

$$
P_{\text {dissipited }}=I \Delta V=I^{2} R=\frac{\Delta V^{2}}{R}
$$

$$
P_{\text {absorbed }}=I \Delta V=\frac{d Q}{d t} \frac{Q}{C}
$$

$$
=\frac{d}{d t} \frac{Q^{2}}{2 C}=\frac{d U}{d t}
$$

Kirchhoff's Rules

$$
I_{1}=I_{2}+I_{3}
$$

$\Delta V=-\oint_{\text {Closed }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}=0$
P23-9

(Dis)Charging A Capacitor

en

$C \mathcal{E}-Q-R C \frac{d Q}{d t}=0$

$$
Q=C \mathcal{E}\left(1-e^{-t / R C}\right)
$$

$$
I=\frac{d Q}{d t}=\frac{\boldsymbol{\varepsilon}}{R} e^{-t / \mathrm{RC}}
$$

General Comment: RC

All Quantities Either:

$\operatorname{Value}(t)=\operatorname{Value}_{\text {Final }}\left(1-e^{-t / \tau}\right)$
Value $(t)=$ Value $_{0} e^{-t / \tau}$
τ can be obtained from differential equation (prefactor on d / dt) e.g. $\tau=\mathrm{RC}$

PRS Questions: DC Circuits with Capacitors

Class 12

Right Hand Rules

1. Torque: Thumb = torque, Fingers show rotation
2. Feel: Thumb $=1$,

Fingers $=B$,
Palm = F
3. Create: Thumb = I

Fingers (curl) $=\mathrm{B}$
4. Moment: Fingers (curl) = I

Thumb $=$ Moment (=B inside loop)

Magnetic Force

$$
\overrightarrow{\mathbf{F}}_{B}=q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}
$$

$d \overrightarrow{\mathbf{F}}_{B}=\operatorname{Id} \overrightarrow{\mathbf{s}} \times \overrightarrow{\mathbf{B}}$
$\overrightarrow{\mathbf{F}}_{B}=I(\overrightarrow{\mathbf{L}} \times \overrightarrow{\mathbf{B}})$

PRS Questions: Right Hand Rule

Class 14

Magnetic Dipole Moments

$\overrightarrow{\boldsymbol{\mu}} \equiv I A \hat{\mathbf{n}} \equiv I \overrightarrow{\mathbf{A}}$

Generate:

Feel:

1) Torque to align with external field
2) Forces as for bar magnets

Helmholtz Coil

Common Concept Question

Parallel (Helmholtz) makes uniform field (torque, no force) Anti-parallel makes zero, nonuniform field (force, no torque)

PRS Questions: Magnetic Dipole Moments

Class 17

The Biot-Savart Law

Current element of length ds carrying current I (or equivalently charge q with velocity v) produces a magnetic field:

Biot-Savart: 2 Problem Types

Notice that r is the same for every point on the loop. You don't really need to integrate (except to find path length)

Ampere's Law: $\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{s}}=\mu_{0} I_{e n c}$

(Infinite) Current Sheet

Torus/Coax

PRS Questions: Making B Fields

Classes 14-19

SAMPLE EXAM:

Problem 1: Wire Loop

A current flowing in the circuit pictured produces a magnetic field at point P pointing out of the page with magnitude B.
a) What direction is the current flowing in the circuit?
b) What is the magnitude of the current flow?

Solution 1: Wire Loop

a) The current is flowing counter-clockwise, as shown above
b) There are three segments of the wire: the semi-circle, the two horizontal leads, and the two vertical leads.
The two vertical leads do not contribute to the B field (ds || r)
The two horizontal leads make an infinite wire a distance D from the field point.

Solution 1: Wire Loop

For the semi-circle use Biot-Savart:

$$
\begin{aligned}
\mathbf{d} \overrightarrow{\mathbf{B}} & =\frac{\mu_{0}}{4 \pi} \frac{I d \overrightarrow{\mathbf{s}} \times \hat{\mathbf{r}}}{r^{2}} \quad r=\frac{D}{2} \text { and } d \overrightarrow{\mathbf{s}} \perp \hat{\mathbf{r}} \\
B & =\int d B=\int \frac{\mu_{0}}{4 \pi} \frac{I d \overrightarrow{\mathbf{s}} \times \hat{\mathbf{r}}}{r^{2}} \\
& =\frac{\mu_{0}}{4 \pi} \frac{I}{r^{2}}(\pi r)=\frac{\mu_{0} I}{4 r}=\frac{\mu_{0} I}{2 D}
\end{aligned}
$$

Solution 1: Wire Loop

Adding together the two parts:

$$
B=\frac{\mu_{0} I}{2 \pi D}+\frac{\mu_{0} I}{2 D}=\frac{\mu_{0} I}{2 D}\left(1+\frac{1}{\pi}\right)
$$

They gave us B and want I to make that B :

$$
I=\frac{2 D B}{\mu_{0}\left(1+\frac{1}{\pi}\right)}
$$

Problem 2: RC Circuit

Initially C is uncharged.

1. When the switch is first closed, what is the current i_{3} ?
2. After a very long time, how much charge is stored on the capacitor?
3. Obtain a differential equation for the charge on the capacitor
(Here only, let $R_{1}=R_{2}=R_{3}=R$)
Now the switch is opened
4. Immediately after opening the switch, what is i_{1} ? i_{2} ? i_{3} ?
5. How long before i_{2} falls to $1 / e$ of this initial value?

Solution 2: RC Circuit

Initially C is uncharged \rightarrow Looks like short

Solution 2: RC Circuit

After a long time, C is full $\rightarrow i_{2}=0$

$$
i_{1}=i_{3}=\frac{\varepsilon}{R_{1}+R_{3}}
$$

$$
Q=C V_{\mathrm{C}}=C\left(i_{1} R_{1}\right)=C \varepsilon \frac{R_{1}}{R_{1}+R_{3}}
$$

Solution 2: RC Circuit

 Kirchhoff's Loop Rules
Left: $-i_{3} R+\varepsilon-i_{1} R=0$ Right: $-i_{3} R+\varepsilon-i_{2} R-q / c=0$ Current: $i_{3}=i_{1}+i_{2}$
Want to have i_{2} and q only $(L-2 R)$:

$$
\begin{aligned}
0 & =-\left(i_{1}+i_{2}\right) R+\varepsilon-i_{1} R+2\left(i_{1}+i_{2}\right) R-2 \varepsilon+2 i_{2} R+2 q / c \\
& =3 i_{2} R-\varepsilon+2 q / c \\
i_{2} & =+\frac{d q}{d t} \rightarrow \frac{d q}{d t}=\frac{\varepsilon}{3 R}-\frac{2 q}{3 R C}
\end{aligned}
$$

Solution 2: RC Circuit

Now open the switch.

Capacitor now like a battery, with:

$$
V_{\mathrm{C}}=\frac{Q}{C}=\varepsilon \frac{R_{1}}{R_{1}+R_{3}} \quad i_{1}=-i_{2}=\frac{V_{\mathrm{C}}}{R_{1}+R_{2}}=\varepsilon \frac{R_{1}}{R_{1}+R_{3}} \frac{1}{R_{1}+R_{2}}
$$

Solution 2: RC Circuit

How long to fall to $1 / \mathrm{e}$ of initial current? The time constant!

This is an easy circuit since it just looks like a resistor and capacitor in series, so:

$$
\tau=\left(R_{1}+R_{2}\right) C
$$

Notice that this is different than the charging time constant, because there was another resistor in the circuit during the charging

Problem 3: Non-Uniform Slab

Consider the slab at left with non-uniform current density:

$$
\overrightarrow{\mathbf{J}}=J_{o} \frac{|x|}{d} \hat{\mathbf{k}}
$$

Find B everywhere

Solution 3: Non-Uniform Slab

Direction: Up on right, down on left Inside: (at $0<x<\mathrm{d}): ~ \oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{s}}=\mu_{0} I_{\text {enc }}$ $\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{s}}=\boldsymbol{B} \ell+0+0+0$

$$
\begin{aligned}
\mu_{0} I_{e n c}= & \mu_{0} \iint \overrightarrow{\mathbf{J}} \cdot d \overrightarrow{\mathbf{A}}=\mu_{0} \int_{0}^{x} \frac{J_{0} x}{d} \ell d x \\
& =\mu_{0} \frac{J_{0} \ell}{d} \frac{x^{2}}{2}
\end{aligned}
$$

$$
B=\mu_{0} \frac{J_{0}}{d} \frac{x^{2}}{2} \text { up }
$$

Solution 3: Non-Uniform Slab

Direction: Up on right, down on left Outside: $(\mathrm{x}>\mathrm{d}): \quad \oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{s}}=\mu_{0} I_{\text {enc }}$ $\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{s}}=B \ell+0+0+0$

$$
\mu_{0} I_{\text {enc }}=\mu_{0} \iint \overrightarrow{\mathbf{J}} \cdot d \overrightarrow{\mathbf{A}}=\mu_{0} \int_{0}^{d} \frac{J_{0} x}{d} \ell d x
$$

$$
=\mu_{0} \frac{J_{0} \ell}{d} \frac{d^{2}}{2}
$$

$$
B=\frac{1}{2} \mu_{0} J_{0} d \text { up }
$$

Problem 4: Solenoid

A current I flows up a very long solenoid and then back down a wire lying along its axis, as pictured. The wires are negligibly small (i.e. their radius is 0) and are wrapped at n turns per meter.
a) What is the force per unit length (magnitude and direction) on the straight wire due to the current in the solenoid? b) A positive particle (mass m, charge q) is launched inside of the solenoid, at a distance $r=a$ to the right of the center. What velocity (direction and non-zero magnitude) must it have so that the field created by the wire along the axis never exerts a force on it?

Solution 4: Solenoid

SUPERPOSITION

You can just add the two fields from each part individually
a) Force on wire down axis

Since the current is anti-parallel to the field produced by the solenoid, there is no force ($\mathrm{F}=0$) on this wire
b) Launching Charge q

The central wire produces a field that wraps in circles around it. To not feel a force due to this field, the particle must always move parallel to it - it must move in a circle of radius a (since that is the radius it was launched from).

Solution 4: Solenoid

 $\stackrel{R}{ }$
b) Launching Charge q

Now we just need to make a charge q move in a circular orbit with $r=a$:

$$
\overrightarrow{\mathbf{F}}_{B}=q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}=q v B=m v^{2} / r=m v^{2} / a
$$

$$
v=\frac{q B a}{m}=\frac{q \mu_{0} n I a}{m} \text { out of the page }
$$

Problem 5: Coaxial Cable

Consider a coaxial cable of with inner conductor of radius a and outer conductor of inner radius b and outer radius c. A current I flows into the page on the inner conductor and out of the page on the outer conductor.

What is the magnetic field everywhere (magnitude and direction) as a function of distance r from the center of the wire?

Solution 5: Coaxial Cable

Everywhere the magnetic field is clockwise. To figure out the magnitude use Ampere's Law:
$\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{s}}=\mu_{0} I_{\text {enc }} \Rightarrow B \cdot 2 \pi r=\mu_{0} I_{e n c}$

$$
\Rightarrow B=\frac{\mu_{0} I_{e n c}}{2 \pi r}
$$

The amount of current penetrating our Amperian loop depends on the radius r :

$$
r \leq a: I_{e n c}=I \frac{r^{2}}{a^{2}} \quad \Rightarrow B=\frac{\mu_{0} I r}{2 \pi a^{2}} \text { clockwise }
$$

Solution 5: Coaxial Cable

$$
\begin{aligned}
& \text { (ranabc Remember: Everywhere } \\
& B=\frac{\mu_{0} I_{\text {enc }}}{2 \pi r} \text { clockwise } \\
& a \leq r \leq b: I_{\text {Encl }}=I \quad \Rightarrow B=\frac{\mu_{0} I}{2 \pi r} \text { clockwise } \\
& b \leq r \leq c: I_{\text {Encl }}=I\left(1-\frac{r^{2}-b^{2}}{c^{2}-b^{2}}\right) \\
& \Rightarrow \quad B=\frac{\mu_{0} I}{2 \pi r}\left(1-\frac{r^{2}-b^{2}}{c^{2}-b^{2}}\right) \text { clockwise }
\end{aligned}
$$

Solution 5: Coaxial Cable

Remember: Everywhere

$$
B=\frac{\mu_{0} I_{e n c}}{2 \pi r} \text { clockwise }
$$

$$
r \geq c: I_{\text {Encl }}=0 \quad \Rightarrow \quad B=0
$$

