Class 24: Outline

Hour 1:

Inductance & LR Circuits

Hour 2: Energy in Inductors Last Time: Faraday's Law Mutual Inductance

Faraday's Law of Induction

Changing magnetic flux induces an EMF

Lenz: Induction opposes change

Mutual Inductance

 $\rightarrow M_{12}$

A current
$$I_2$$
 in coil 2, induces some
magnetic flux Φ_{12} in coil 1. We
define the flux in terms of a "mutual
inductance" M_{12} :

$$N_1 \Phi_{12} \equiv M_{12} I_2$$

 $N_1 \Phi_{12}$

 I_2

$$\mathcal{E}_{12} \equiv -M \, \frac{dI_2}{dt}$$

You need AC currents!

Demonstration: Remote Speaker This Time: Self Inductance

Self Inductance

What if we forget about coil 2 and ask about putting current into coil 1? There is "self flux":

 $N_1 \Phi_{11} \equiv M_{11} I_1 \equiv LI$ $\rightarrow L = \frac{N\Phi}{I}$

$$\mathcal{E} \equiv -L\frac{dI}{dt}$$

Calculating Self Inductance

1. Assume a current I is flowing in your device

- 2. Calculate the B field due to that I
- 3. Calculate the flux due to that B field
- 4. Calculate the self inductance (divide out I)

Group Problem: Solenoid

Calculate the self-inductance L of a solenoid (n turns per meter, length ℓ , radius R)

<u>REMEMBER</u>

- 1. Assume a current I is flowing in your device
- 2. Calculate the B field due to that I
- 3. Calculate the flux due to that B field
- 4. Calculate the self inductance (divide out I)

$$L = N\Phi/I$$

Inductor Behavior

Inductor with constant current does nothing

Inductors in Circuits

Inductor: Circuit element which exhibits self-inductance

Inductors hate change, like steady state They are the opposite of capacitors!

PRS Question: Closing a Switch

P24-14

LR Circuit

$$\mathcal{E} - IR - L\frac{dI}{dt} = 0 \implies \frac{L}{R}\frac{dI}{dt} = -\left(I - \frac{\mathcal{E}}{R}\right)$$

Solution to this equation when switch is closed at t = 0:

LR Circuit

t=0⁺: Current is trying to change. Inductor works as hard as it needs to to stop it

t= ∞ : Current is steady. Inductor does nothing.

LR Circuit

t=0⁺: Current is trying to change. Inductor works as hard as it needs to to stop it

t= ∞ : Current is steady. Inductor does nothing.

General Comment: LR/RC

All Quantities Either:

 τ can be obtained from differential equation (prefactor on d/dt) e.g. τ = L/R or τ = RC

Group Problem: LR Circuit

- What direction does the current flow just after turning off the battery (at t=0+)? At t=∞?
- 2. Write a differential equation for the circuit
- 3. Solve and plot I vs. t and voltmeters vs. t

PRS Questions: LR Circuit & Problem...

Non-Conservative Fields

E is no longer a conservative field – Potential now meaningless This concept (& next 3 slides) are complicated. Bare with me and try not to get confused

Kirchhoff's Modified 2nd Rule

$$\sum_{i} \Delta V_{i} = -\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} = +N \frac{d\Phi_{B}}{dt}$$

$$\Rightarrow \sum_{i} \Delta V_{i} - N \frac{d\Phi_{B}}{dt} = 0$$

If all inductance is 'localized' in inductors then our problems go away – we just have:

$$\sum_{i} \Delta V_{i} - L \frac{dI}{dt} = 0$$

Ideal Inductor

BUT, EMF generated in an inductor is not a voltage drop across the inductor! $\varepsilon = -L \frac{dI}{dI}$ dt

 $\Delta V_{\text{inductor}} \equiv -\int \vec{\mathbf{E}} \cdot d\,\vec{\mathbf{s}} = 0$

Because resistance is 0, E must be 0!

Conclusion: Be mindful of physics Don't think too hard doing it

Demos: Breaking circuits with inductors

Internal Combustion Engine

See figure 1: http://auto.howstuffworks.com/engine3.htm

Ignition System

The Distributor:

http://auto.howstuffworks.com/ignition-system4.htm

(A) High Voltage Lead(B) Cap/Rotor Contact(C) Distributor Cap(D) To Spark Plug

(A) Coil connection(B) Breaker Points(D) Cam Follower(E) Distributor Cam

Modern Ignition

See figure: http://auto.howstuffworks.com/ignition-system.htm

Energy in Inductor

Energy Stored in Inductor

 $U_L = \frac{1}{2}LI^2$

But where is energy stored?

Example: Solenoid

Ideal solenoid, length *l*, radius *R*, *n* turns/length, current *I*:

$$B = \mu_0 n I \qquad L = \mu_o n^2 \pi R^2 l$$

$$U_{B} = \frac{1}{2}LI^{2} = \frac{1}{2} \left(\mu_{o} n^{2} \pi R^{2} l \right) I^{2}$$

$$U_{B} = \left(\frac{B^{2}}{2\mu_{o}}\right)\pi R^{2}l$$
Energy Volume

Energy Density

Energy is stored in the magnetic field!

: Magnetic Energy Density

$$u_E = \frac{\varepsilon_o E^2}{2}$$

: Electric Energy Density

Group Problem: Coaxial Cable

Image: Image:

- 1. How much energy is stored per unit length?
- 2. What is inductance per unit length?

HINTS: This does require an integral The EASIEST way to do (2) is to use (1)

Back to Back EMF

PRS Question: Stopping a Motor