

A point charge +Q is placed at the center of the conductors. The induced charges are:

- 1. Q(I1) = Q(I2) = -Q;Q(O1) = Q(O2) = +Q
- 2. Q(I1) = Q(I2) = +Q;Q(O1) = Q(O2) = -Q
- 3. Q(I1) = -Q; Q(O1) = +QQ(I2) = Q(O2) = 0
- 4. Q(I1) = -Q; Q(O2) = +QQ(O1) = Q(I2) = 0

A point charge +Q is placed at the center of the conductors. The potential at O1 is:

- 1. Higher than at I1
- 2. Lower than at I1
- 3. The same as at I1

A point charge +Q is placed at the center of the conductors. The potential at O2 is:

- 1. Higher than at I1
- 2. Lower than at I1
- 3. The same as at I1

A point charge +Q is placed at the center of the conductors. If a wire is used to connect the two conductors, then positive charge will flow

- 1. From the inner to the outer conductor
- 2. From the outer to the inner conductor
- 3. Not at all

Capacitor Circuit

Three identical capacitors are connected to a battery as pictured.

The battery is then disconnected. How do the charge on A, B & C compare before and after the battery is removed?

BEFORE; AFTER

- 1. $Q_A = Q_B = Q_C$; No Change
- 2. $Q_A = Q_B = Q_C; Q_A > Q_B = Q_C$
- 3. $Q_A = Q_B = Q_C$; $Q_A < Q_B = Q_C$
- 4. $Q_A > Q_B = Q_C$; No Change
- 5. $Q_A > Q_B = Q_C; Q_A = Q_B = Q_C$
- 6. $Q_A < Q_B = Q_C$; No Change
- 7. $Q_A < Q_B = Q_C; \ Q_A = Q_B = Q_C$

Dielectric in a Capacitor

A parallel plate capacitor is charged to a total charge Q and the battery removed. A slab of material with dielectric constant κ is inserted between the plates. The **charge** stored in the capacitor

- 1. Increases
- 2. Decreases
- 3. Stays the Same

Dielectric in a Capacitor

A parallel plate capacitor is charged to a total charge Q and the battery removed. A slab of material with dielectric constant κ is inserted between the plates. The **energy** stored in the capacitor

- 1. Increases
- 2. Decreases
- 3. Stays the Same

Dielectric in a Capacitor

A parallel plate capacitor is charged to a total charge Q and the battery removed. A slab of material with dielectric constant κ is inserted between the plates. The **force on the dielectric**

- 1. pulls in the dielectric
- 2. pushes out the dielectric
- 3. is zero