Practice Right Hand Rule \#1
Remember: $\overrightarrow{\mathbf{F}}_{\mathrm{B}}=q \overrightarrow{\mathbf{v}} \times \overline{\mathbf{B}}$
What direction is the force on a positive charge when entering a uniform B field in the direction indicated?

1) up
2) down
3) left
4) right
5) into page
6) out of page
7) there is no net force

Practice Right Hand Rule \#2
Remember: $\overrightarrow{\mathbf{F}}_{B}=q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}$
What direction is the force on a positive charge when entering a uniform B field in the direction indicated?

B

1) up
2) down
3) left
4) right
5) into page
6) out of page
7) there is no net force

Practice Right Hand Rule \#3

What direction is the force on a positive charge when entering a uniform B field in the direction indicated?

1) up
2) down
3) left
4) right
5) into page
6) out of page
7) there is no net force

Hall Effect

A conducting slab has current to the right. A B field is applied out of the page. Due to magnetic forces on the charge carriers, the bottom of the slab is at a higher electric potential than the top of the slab.

On the basis of this experiment, the sign of the charge carriers that make up the current in the slab is:

1) positive
2) negative
3) cannot be determined
