Experiment 6: Prediction 1

Wire is above the magnet. The force on the wire is:

1. Up
2. Down
3. Right 4. Left
4. Into Page 6. Out of Page
5. Don’t Know

Experiment 6: Prediction 2

Wire is in front of magnet. The force on the wire is
2. Down
3. Right 4. Left
5. Into Page 6. Out of Page 7. Don’t Know

Experiment 6: Prediction 3

 The force on the wire is

$$
\begin{array}{ll}
\text { 1. Up } & \text { 2. Down } \\
\text { 3. Right } & \text { 4. Left } \\
\text { 5. Into Page } & \text { 6. Out of Page } \\
\text { 7. Don't Know }
\end{array}
$$

Experiment 6: Prediction 4

Force on the coil of wire is
2. Down
3. Right 4. Left
5. Into Page 6. Out of Page
7. Don’t Know

Experiment 6: Prediction 5

The force on the coil of wire is

1. Up
2. Down
3. Right
4. Left
5. Into Page 6. Out of Page
6. Don’t Know

Bent Wire

1. points towards the $+x$ direction
2. points towards the $+y$ direction
3. points towards the $+z$ direction
4. points towards the $-x$ direction
5. points towards the $-y$ direction 6. points towards the $-z$ direction 7. points nowhere because it is zero

Curved Wire

The magnetic field at P is equal to the field of:

1. a semicircle
2. a semicircle plus the
field of a long straight wire 3. a semicircle loop minus the field of a long straight wire 4. none of the above

Two Particles
Two positive charges are mounted
on tracks that force them to move at constant velocities. The magnetic force on the charge q_{1} due to q_{2} points in the direction of:

1. +x 4. -X
2. +y 5. -y
3. +Z 6. -Z
4. Nothing (zero force)
5. Points in some other direction
