

Wire is above the magnet. The force on the wire is:

Up
 Down
 Right
 Left
 Into Page
 Out of Page
 Don't Know

Wire is in front of magnet. The force on the wire is

Up
 Down
 Right
 Left
 Into Page
 Out of Page
 Don't Know

- Wire is behind the magnet. The force on the wire is
- Up
 Down
 Right
 Left
 Into Page
 Out of Page
 Don't Know

Force on the coil of wire is

Up
 Down
 Right
 Left
 Into Page
 Out of Page
 Don't Know

The force on the coil of wire is

- 1. Up 2. Down
- 3. Right 4. Left
- 5. Into Page 6. Out of Page
- 7. Don't Know

points towards the +x direction
 points towards the +y direction
 points towards the +z direction
 points towards the -x direction
 points towards the -y direction
 points towards the -z direction
 points towards the -z direction

Curved Wire

The magnetic field at P is equal to the field of:

- 1. a semicircle
- a semicircle plus the field of a long straight wire
 a semicircle loop minus the field of a long straight wire
 none of the above

Two Particles

Two positive charges are mounted on tracks that force them to move at constant velocities. The magnetic force on the charge q_1 due to q_2 points in the direction of:

- 1. +x 4. -x
- 2. +y 5. -y
- 3. +z 6. -z
- 7. Nothing (zero force)
- 8. Points in some other direction