

Consider the above circular capacitor, and the Amperian loop (radius $r$ ) in the plane midway between the plates. When the capacitor is charging, the line integral of the magnetic field around the Amperian loop is 1. Zero: No current crosses the surface spanning the Amperian loop
2. Zero: The magnetic field is perpendicular to the Amperian Loop
3. Non-zero: An electric current flows between the capacitor plates
4. Non-zero: There is time changing electric flux on the surface spanning the Amperian Loop


The plot above shows a side and a top view of a capacitor with charge $Q$ with electric and magnetic fields E and B at time $t$. The charge $Q$ is:

1. Increasing in time
2. Constant in time.
3. Decreasing in time.
4. Don't have a clue.


The graph shows a plot of the function $y=\cos (k x)$. The value of $k$ is

1. $1 / 2$
2. $1 / 4$
3. $\pi$
4. $\pi / 2$
5. Don't have a clue


The graph shows the $E$ (yellow) and $B$ (blue) fields of a plane wave. This wave is propagating in the

1. $+x$ direction
2. $-x$ direction
3. +z direction
4. $-z$ direction
5. Don't have a clue


The plot above shows a side and a top view of a capacitor with charge $Q$ with electric and magnetic fields E and B at time $t$. The charge $Q$ is:
5. Increasing in time
6. Constant in time.
7. Decreasing in time.
8. Don't have a clue.


The plot above shows a side and a top view of a solenoid carrying current $I$ with electric and magnetic fields $E$ and $B$ at time $t$. In the solenoid, the current $I$ is:

1. Increasing in time
2. Constant in time.
3. Decreasing in time.
4. Don't have a clue.
