Coherent, monochromatic plane waves:

In the Figure above, the fringe at point P on the screen will be:

1. An interference maximum
2. An interference minimum 3. Don't have a clue

Coherent monochromatic plane waves impinge on two apertures separated by a distance d. An approximate formula for the path length difference between the two rays shown is

1. $d \sin \theta$
2. $L \sin \theta$
3. $d \cos \theta$
4. $L \cos \theta$
5. Don't have a clue.

Two Slit Interference:

A

The light passing through this slit when seen on a screen far from the slit will exhibit destructive interference when

1. $\frac{a}{2} \sin \theta=\frac{\lambda}{4}$
2. $\frac{a}{2} \sin \theta=\frac{\lambda}{2}$
3. $\frac{a}{2} \sin \theta=\lambda$
4. Don't have a clue.

Coherent monochromatic plane waves impinge on two long narrow apertures (width a) that are separated by a distance $d(d \gg a)$. The resulting pattern on a screen far away is shown above. Which structure in the pattern above is due to the finite width a of the apertures?

1. The distantly-spaced zeroes of the envelope, as indicated by the length A above.
2. The closely-spaced zeroes of the rapidly varying fringes with length B above.
3. Don't have a clue.

Coherent monochromatic plane waves impinge on two long narrow (width a) apertures separated by a distance d. The resulting pattern on a screen far away is shown above. For this arrangement:

1. The value of d / a is about $1 / 8$
2. The value of d / a is about $1 / 4$
3. The value of d / a is about 4
4. The value of d / a is about 8
5. Don't have a clue.
