
Summary of Class 28 8.02 

Topics: Driven LRC Circuits 
Related Reading: 

Course Notes (Liao et al.): Chapter 12 
Experiments: (7) Undriven & Driven LRC Circuits Part Two: Driven RLC Circuits 

Topic Introduction 

In today’s class we will investigate the behavior of LRC circuits that we introduced in 
Monday’s class in an extended experiment.  First you will study undriven circuits, which 
behave like a mass on a spring which is pulled and then released.  Then you will look at the 
behavior of driven circuits that exhibit resonance. 

Driven LRC Circuits 
We can also add a force to our circuits – the AC power supply.  In this 
case the current responds at the drive frequency. However, depending on 
the frequency of the drive, the current may be out of phase (either leading 
or lagging the drive) and its amplitude will also vary.  This is easily seen 
in mechanical systems.  For a fantastic example, play with the pendula at 
the Kendall T station. Depending on how fast you drive them they will respond either in or 
out of phase with your drive, and they will either move a little or a lot.  When you drive at 
the natural frequency, the amplitude increases greatly, and the system is “in resonance.” 
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One Element at a Time 
In order driven LRC circuits its easiest to start thinking about individual circuit elements.  A 
resistor obeys Ohm’s law:  V=IR.  Neither the amplitude nor phase of the voltage depends on 
the frequency (the response voltage is always in phase with the current). 
A capacitor is different.  At low frequencies the capacitor “fills up,” but at high frequencies it 
begins discharging before “filling up.”  The voltage is frequency dependent and the current 
leads the voltage (current flows before the charge/potential on the capacitor appears). 
An inductor is the opposite – it hates the change of high frequencies and thus has large 
voltages there – and the current lags – the inductor fights before current flows. 
When put together in LRC circuits, the capacitor “dominates” at low frequencies, the 
inductor at high ones. At resonance (ω = 1 LC  ) the frequency is such that these two 
effects balance and the current will be largest in the circuit.  Also at this frequency the 
current is in phase with the driving voltage (the AC power supply). 

Seeing it Mathematically – Phasors 
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To do this mathematically we will use phasor diagrams.  A phasor is a 
vector whose magnitude is the amplitude of either voltage or current 
and whose angle corresponds to its phase. Phasors rotate CCW about 
the origin with time as their phase evolves, and their current amplitude 
is their component along the y-axis, which oscillates as it should. 
Phasors allow us to add voltages that are not in phase with each other. 
For example, the phasor diagram above illustrates the relationship of 

voltages in a series LRC circuit. The current I is assigned to be at “0 phase” (along the x-
axis). The phase of the voltage across the resistor is the same.  The voltage across the 
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inductor L leads (is ahead of I) and the voltage across the capacitor C lags (is behind I). If 
you add up (using vector arithmetic) the voltages across R, L & C (the red and dashed blue & 
green lines respectively) you arrive at the voltage across the power supply.  This then gives 
you a rapid way of understanding the phase between the drive (the power supply) and the 
response (the current) – here labeled φ. 

Natural Frequency 
Last class we derived the natural frequency ω = 1 LC   at which an undriven, undamped 
circuit will ring. This is also the frequency at which a driven circuit will be in resonance, that 
is, where is will exhibit the maximum current for a given drive voltage and where the current 
and drive voltage will be in phase. 

Reactance & Impedance 
The reactance X is the proportionality constant relating voltage across a circuit element and 
current through it (V0 = I0 X). The difference between resistance and reactance is that the 
current through and voltage across a resistance are always in phase, while for a reactance 
they are always 90º out of phase.  The generic term, impedance (Z), is used when the current 
and voltage have an arbitrary phase relationship. 

The reactance of a capacitor is X C = 1 ωC . If you drive current at a low frequency the 
capacitor will fill up and have a large voltage across it, whereas if you drive current a high 
frequency the capacitor will begin discharging before it has a chance to completely charge, 
and hence it won’t build up as large a voltage.  The current leads the voltage by 90º, as is 
most clearly seen in an uncharged capacitor where the current must flow before the 
charge/potential on the capacitor can build up. 

The reactance of an inductor is X L = ωL . It has a larger voltage when the current frequency 
is high, because it doesn’t like change and high frequency means lots of change.  Now the 
current lags the voltage by 90º – if you try to drive a current through an inductor with no 
current in it, the inductor will immediately put up a fight (create an EMF) and then later 
allow current to flow. 
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Using phasors, we added the voltages across a resistor, inductor and capacitor in series and 
found the impedance and phase of the circuit is given by: 

2 2 2Z = R X  = R + (ωL −1 ωC )2 and tan ϕ = X+ R = (ωL −1 ωC R  ) 

As you can see from the phase relationship (or by simply thinking about the circuit), at low 
frequencies the capacitor will “dominate” (it fills up, limiting the current) whereas at high 
frequencies the inductor will dominate (it fights the rapid changes).  At resonance 
(ω = 1 LC ) these two effects balance, the impedance is a minimum and the phase is zero 
(current is in phase with the driving voltage of the AC power supply). 
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The amplitude of the current for a given drive thus varies as a 
function of frequency, resulting in a frequency response curve 
similar to that pictured at left.  Mathematically,  

V VI0 = 0 = 
1

0 

Z R2 + (ωL − ωC )2 

Important Equations 
Impedance of R, L, C: R R (in phase), X C = 

1  (I leads), X L = ω L (I lags) = 
ωC 

2 2 2Impedance of series RLC: Z = R X  = R + (ωL −1 ωC )2+ 

Phase in series RLC: tan ϕ = X R = (ωL −1 ωC R  ) 
NOTE: Although I place these equations here they are not as fundamental as the impedance 
of R, L & C individually. Those resistance/reactances always hold, while this impedance and 
phase are only valid in series RLC circuits.  Furthermore, these equations are readily 
derivable, and you should definitely know how to do so. 

Experiment 7: Undriven and Driven LRC Circuits Part Two: 
driven RLC Circuits 

Preparation: Read pre-lab and answer pre-lab questions. 

This lab consists of two main parts.  You did the first part last class involving an undriven 
LRC circuit and determined its natural frequency.  In the second part you will drive the same 
circuit around that natural frequency to confirm that it is the resonance frequency (or at least 
close to it) and to determine the properties of the circuit both on and off resonance. 
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