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Experiment 6: Ohm’s Law, RC and RL Circuits 
 
OBJECTIVES  

 
1. To explore the measurement of voltage & current in circuits 
2. To see Ohm’s law in action for resistors 
3. To explore the time dependent behavior of RC and RL Circuits  
  

PRE-LAB READING 
INTRODUCTION 
 
When a battery is connected to a circuit consisting of wires and other circuit elements 
like resistors and capacitors,  voltages can develop across those elements and currents can 
flow through them.  In this lab we will investigate three types of circuits: those with only 
resistors in them and those with resistors and either capacitors (RC circuits) or inductors 
(RL circuits).  We will confirm that there is a linear relationship between current through 
and potential difference across resistors (Ohm’s law:  V = IR).  We will also measure the 
very different relationship between current and voltage in a capacitor and an inductor, 
and study the time dependent behavior of RC and RL circuits. 
 
The Details:  Measuring Voltage and Current 
 
Imagine you wish to measure the voltage drop across and current through a resistor in a 
circuit.  To do so, you would use a voltmeter and an ammeter – similar devices that 
measure the amount of current flowing in one lead, through the device, and out the other 
lead.  But they have an important difference.  An ammeter has a very low resistance, so 
when placed in series with the resistor, the current measured is not significantly affected 
(Fig. 1a).  A voltmeter, on the other hand, has a very high resistance, so when placed in 
parallel with the resistor (thus seeing the same voltage drop) it will draw only a very 
small amount of current (which it can convert to voltage using Ohm’s Law VR = Vmeter = 
ImeterRmeter), and again will not appreciably change the circuit (Fig. 1b). 
 

   

(a) (b) 

Figure 1:  Measuring current and voltage in a simple circuit.  To measure current 
through the resistor (a) the ammeter is placed in series with it.  To measure the voltage 
drop across the resistor (b) the voltmeter is placed in parallel with it. 
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The Details:  Capacitors 
 
Capacitors store charge, and develop a voltage drop V across them proportional to the 
amount of charge Q that they have stored:  V = Q/C.  The constant of proportionality C is 
the capacitance (measured in Farads = Coulombs/Volt), and determines how easily the 
capacitor can store charge.  Typical circuit capacitors range from picofarads (1 pF = 10-12 
F) to millifarads (1 mF = 10-3 F).  In this lab we will use microfarad capacitors (1 µF = 
10-6 F). 
 
RC Circuits 
 
Consider the circuit shown in Figure 2. The capacitor (initially uncharged) is connected 
to a voltage source of constant emf . At t = 0, the switch S  is closed. E
 

  

(b) (a) 

 
Figure 2 (a) RC circuit  (b) Circuit diagram for t > 0 

 
In class we derived expressions for the time-dependent charge on, voltage across, and 
current through the capacitor, but even without solving differential equations a little 
thought should allow us to get a good idea of what happens.  Initially the capacitor is 
uncharged and hence has no voltage drop across it (it acts like a wire or “short circuit”).  
This means that the full voltage rise of the battery is dropped across the resistor, and 
hence current must be flowing in the circuit (VR = IR).  As time goes on, this current will 
“charge up” the capacitor – the charge on it and the voltage drop across it will increase, 
and hence the voltage drop across the resistor and the current in the circuit will decrease.  
This idea is captured in the graphs of Fig. 3. 

Vf=ε
Qf=Cε

Q
C

ap
ac

ito
r, 

V C
ap

ac
ito

r

Time
 

VR,0=ε
I0=ε/R

V R
es

is
to

r, 
I

Time
 

(b) (a) 

Figure 3  (a) Voltage across  and charge on the capacitor increase as a function of time 
while (b) the voltage across the resistor and hence current in the circuit decrease. 

 E06-2



After the capacitor is “fully charged,” with its voltage essentially equal to the voltage of the 
battery, the capacitor acts like a break in the wire or “open circuit,” and the current is 
essentially zero.  Now we “shut off” the battery (replace it with a wire).  The capacitor will 
then release its charge, driving current through the circuit.  In this case, the voltage across 
the capacitor and across the resistor are equal, and hence charge, voltage and current all do 
the same thing, decreasing with time.  As you saw in class, this decay is exponential, 
characterized by a time constant t, as pictured in fig. 4. 
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Figure 4  Once (a) the battery is “turned off,” the voltages across the capacitor and 
resistor, and hence the charge on the capacitor and current in the circuit all (b) decay 
exponentially.  The time constant τ is how long it takes for a value to drop by e. 
 
 
The Details:  Inductors 
 
Inductors store energy in the form of an internal magnetic field, and find their behavior 
dominated by Faraday’s Law.  In any circuit in which they are placed they create an EMF 
ε proportional to the time rate of change of current I through them:  ε = L dI/dt.  The 
constant of proportionality L is the inductance (measured in Henries = Ohm s), and 
determines how strongly the inductor reacts to current changes (and how large a self 
energy it contains for a given current).  Typical circuit inductors range from nanohenries 
to hundreds of millihenries.  The direction of the induced EMF can be determined by 
Lenz’s Law:  it will always oppose the change (inductors try to keep the current constant) 
 
RL Circuits 
 
If we replace the capacitor of figure 2 with an inductor we arrive at figure 5. The inductor 
is connected to a voltage source of constant emf . At t = 0, the switch S  is closed. E

  
 
Figure 5 RL circuit.  For t<0 the switch S is open and no 
current flows in the circuit.  At t=0 the switch is closed 
and current I can begin to flow, as indicated by the arrow. 
.
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As we saw in class, before the switch is closed there is no current in the circuit.  When 
the switch is closed the inductor wants to keep the same current as an instant ago – none.  
Thus it will set up an EMF that opposes the current flow.  At first the EMF is identical to 
that of the battery (but in the opposite direction) and no current will flow.  Then, as time 
passes, the inductor will gradually relent and current will begin to flow.  After a long time 
a constant current (I = V/R) will flow through the inductor, and it will be content (no 
changing current means no changing B field means no changing magnetic flux means no 
EMF).  The resulting EMF and current are pictured in Fig. 6. 
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Figure 6  (a) “EMF generated by the inductor” decreases with time (this is what a 
voltmeter hooked in parallel with the inductor would show) (b) the current and hence the 
voltage across the resistor increase with time, as the inductor ‘relaxes.’ 
 
After the inductor is “fully charged,” with the current essentially constant, we can shut off 
the battery (replace it with a wire).  Without an inductor in the circuit the current would 
instantly drop to zero, but the inductor does not want this rapid change, and hence 
generates an EMF that will, for a moment, keep the current exactly the same as it was 
before the battery was shut off.  In this case, the EMF generated by the inductor and 
voltage across the resistor are equal, and hence EMF, voltage and current all do the same 
thing, decreasing exponentially with time as pictured in fig. 7. 
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Figure 7  Once (a) the battery is turned off, the EMF induced by the inductor and hence 
the voltage across the resistor and current in the circuit all (b) decay exponentially.  The 
time constant τ is how long it takes for a value to drop by e. 
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The Details:  Non-Ideal Inductors 
So far we have always assumed that circuit elements are ideal, for example, that inductors 
only have inductance and not capacitance or resistance.  This is generally a decent 
assumption, but in reality no circuit element is truly ideal, and today we will need to 
consider this.  In particular, today’s “inductor” has both inductance and resistance (real 
inductor = ideal inductor in series with resistor).  Although there is no way to physically 
separate the inductor from the resistor in this circuit element, with a little thought (which 
you will do in the pre-lab) you will be able to measure both the resistance and inductance.  
 
APPARATUS 
 
1.  Science Workshop 750 Interface 

 
In this lab we will again use the Science Workshop 750 interface to create a “variable 
battery” which we can turn on and off, whose voltage we can change and whose current 
we can measure. 
 
2. AC/DC Electronics Lab Circuit Board 
We will also use, for the first of several times, the circuit board pictured in Fig. 8.  This is 
a general purpose board, with (A) battery holders, (B) light bulbs, (C) a push button 
switch, (D) a variable resistor called a potentiometer, and (E) an inductor.  It also has (F) 
a set of 8 isolated pads with spring connectors that circuit components like resistors and 
capacitors can easily be pushed into.  Each pad has two spring connectors connected by a 
wire (as indicated by the white lines).  The right-most pads also have banana plug 
receptacles, which we will use to connect to the output of the 750. 

 
Figure 8 The AC/DC Electronics Lab Circuit Board, with (A) Battery holders, (B) light 
bulbs, (C) push button switch, (D) potentiometer, (E) inductor and (F) connector pads 
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3. Current & Voltage Sensors 
 

Recall that both current and voltage sensors follow the convention that red is “positive” 
and black “negative.”  That is, the current sensor records currents flowing in the red lead 
and out the black as positive.  The voltage sensor measures the potential at the red lead 
minus that at the black lead. 
 

   

(a) (b) 

 
Figure 9 (a) Current and (b) Voltage Sensors 

 
 

4. Resistors & Capacitors 
 

We will work with resistors and capacitors in this lab.  Resistors (Fig. 8a) have color 
bands that indicate their value (see appendix A if you are interested in learning to read 
this code), whereas capacitors (Fig. 8b) are typically stamped with a numerical value. 
 

  

(a) (b) 

 
Figure 10 Examples of a (a) resistor and (b) capacitor.  Aside from their size, most 

resistors look the same, with 4 or 5 colored bands indicating the resistance.  
Capacitors on the other hand come in a wide variety of packages and are typically 
stamped both with their capacitance and with a maximum working voltage. 
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GENERALIZED PROCEDURE 
 
This lab consists of five main parts.  In each you will set up a circuit and measure voltage 
and current while the battery periodically turns on and off.  In the last two parts you are 
encouraged to develop your own methodology for measuring the resistance and 
inductance of the coil on the AC/DC Electronics Lab Circuit Board both with and without 
a core inserted.  The core is a metal cylinder which is designed to slide into the coil and 
affect its properties in some way that you will measure. 
 
Part 1: Measure Voltage Across & Current Through a Resistor 
Here you will measure the voltage drop across and current through a single resistor 
attached to the output of the 750. 
 
Part 2: Resistors in Parallel 
Now attach a second resistor in parallel to the first and see what happens to the voltage 
drop across and current through the first. 
 
Part 3: Measuring Voltage and Current in an RC Circuit 
In this part you will create a series RC (resistor/capacitor) circuit with the battery turning 
on and off so that the capacitor charges then discharges.  You will measure the time 
constant in two different ways (see Pre-Lab #5) and use this measurement to determine 
the capacitance of the capacitor. 
 
Part 4: Measure Resistance and Inductance Without a Core 
The battery will alternately turn on and turn off.  You will need to hook up this source to 
the coil and, by measuring the voltage supplied by and current through the battery, 
determine the resistance and inductance of the coil. 
 
Part 5: Measure Resistance and Inductance With a Core 
In this section you will insert a core into the coil and repeat your measurements from part 
1 (or choose a different way to make the measurements). 
 

END OF PRE-LAB READING 
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Experiment 6: Ohm’s Law, RC and RL Circuits 
 
Answer these questions on a separate sheet of paper and turn them in before the lab 
 
1.   Measuring Voltage and Current 
 
In Part 1 of this experiment you will measure the potential drop across and current 
through a single resistor attached to the “variable battery.”  On a diagram similar to the 
one below, indicate where you will attach the leads to the resistor, the battery, the voltage 

sensor , and the current sensor .  For the battery and sensors make sure that you 
indicate which color lead goes where, using the convention that red is “high” (or the 
positive input) and black is “ground.”  Reread the pre-lab description of this board 
carefully to understand the various parts.  When you draw a resistor or other circuit 
element it should go between two pads (dark green areas) with each end touching one of 
the spring clips (the metal coils).  Do NOT just draw a typical circuit diagram.  You need 
to think about how you will actually wire this board during the lab.  RECALL:  ammeters 
must be in series with the element they are measuring current through, while voltmeters 
must be in parallel. 

V A

 

 
 
 
2.  Resistors in Parallel 
 
In Part 2 you will add a second resistor in parallel with the first.  Show where you would 
attach this second resistor in the diagram you drew for question 1, making sure that the 
ammeter continues to measure the current through the first resistor and the voltmeter 
measures the voltage across the first resistor. 
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3.  Measuring the Time Constant τ 
 
As you have seen, current always decays exponentially in RC circuits with a time 
constant τ:  I = I0 exp(-t/τ). 
 
We will measure this time constant in two different ways. 
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(a) After measuring the current as a function of 
time we choose two points on the curve 
(t1,I1) and (t2, I2).  What relationship must 
we choose between I2 and I1 in order to 
determine the time constant by subtraction:  
τ = t2 – t1?  Should we be able to find a t2 
that satisfies this for any choice of t1? 
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(b) We can also plot the natural log of the 
current vs. time, as shown at right. If we fit 
a line to this curve we will obtain a slope m 
and a y-intercept b.  From these fitting 
parameters, how can we calculate the time 
constant? 

 
 
(c) Which of these two methods is more likely 

to help us obtain an accurate measurement 
of the time constant?  Why? 

 
Make sure that you record your answers to question 3 in your 
notes as you will need them for the lab. 
 
 
4.  RL Circuits 

Consider the circuit at left, consisting of a battery (emf 
ε), an inductor L, resistor R and switch S. 
 
For times t<0 the switch is open and there is no current 
in the circuit.  At t=0 the switch is closed. 
 
(a) Using Kirchhoff’s loop rules (really Faraday’s 
law now), write an equation relating the emf on the 
battery, the current in the circuit and the time 
derivative of the current in the circuit. 
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In class we stated that this equation was solved by an exponential.  In other words: 
I = A(X – exp(-t/τ)) 

  
(b) Plug this expression into the differential equation you obtained in (a) in order to 

confirm that it indeed is a solution and to determine what the time constant τ and 
the constants A and X are.  What would be a better label for A?  (HINT:  You will 
also need to use the initial condition for current.  What is I(t=0)?). 

(c) Now that you know the time dependence for the current I in the circuit you can 
also determine the voltage drop VR across resistor and the EMF generated by the 
inductor.  Do so, and confirm that your expressions match the plots in Fig. 6a or 
2b. 

 
 
5.  ‘Discharging’ an Inductor 

 
After a long time T the current will reach an equilibrium 
value and inductor will be “fully charged.”  At this point we 
turn off the battery (ε=0), allowing the inductor to 
‘discharge,’ as pictured at left.  Repeat each of the steps a-c 
in problem 4, noting that instead of exp(-t/τ), our 
expression for current will now contain exp(-(t-T)/τ).   
 

 
 
6.  The Coil 
 
The coil you will be measuring has is made of thin copper wire (radius ~ 0.25 mm) and 
has about 600 turns of average diameter 25 mm over a length of 25 mm.  What 
approximately should the resistance and inductance of the coil be?  The resistivity of 
copper at room temperature is around 20 nΩ-m.  Note that your calculations can only be 
approximate because this is not at all an ideal solenoid (where length >> diameter). 
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7.  A Real Inductor 
 
As mentioned above, in this lab you will work with a coil that does not behave as an ideal 
inductor, but rather as an ideal inductor in series with a resistor.  For this reason you have 
no way to independently measure the voltage drop across the resistor or the EMF induced 
by the inductor, but instead must measure them together.  None-the-less, you want to get 
information about both.  In this problem you will figure out how. 
 
 (a) In the lab you will hook up the circuit of problem 4 with the ideal inductor L of that 

problem now replaced by a coil that is a non-ideal inductor – an inductor L and 
resistor r in series.  The battery will periodically turn on and off, displaying a voltage 
as shown here: 
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 Sketch the current through the battery as well as what a voltmeter hooked across the 
coil would show versus time for the two periods shown above.  Assume that the 
period of the battery turning off and on is comparable to but longer than several time 
constants of the circuit.  

 
(b) How can you tell from your plot of the voltmeter across the coil that the coil is not 

an ideal inductor?  Indicate the relevant feature clearly on the plot.  Can you 
determine the resistance of the coil, r, from this feature? 

 
(c) In the lab you will find it easier to make measurements if you do NOT use an 

additional resistor R, but instead simply hook the battery directly to the coil.  (Why? 
Because the time constant is difficult to measure with extra resistance in the circuit).  
Plot the current through the battery and the reading on a voltmeter across the coil for 
this case.  We will only bother to measure the current.  Why? 

 
(d) For this case (only a battery & coil) how will you determine the resistance of the 

coil, r?  How will you determine its inductance L? 
 
 
Make sure that you record your answer to 7d in your notes as 
you will need it for the lab. 
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IN-LAB ACTIVITIES 
 
EXPERIMENTAL SETUP 
 
1. Download the LabView file from the web and save the file to your desktop (right 

click on the link and choose “Save Target As” to the desktop.  Overwrite any file by 
this name that is already there).  Start LabView by double clicking on this file. 

2. Connect the Voltage Sensor to Analog Channel A on the 750 Interface and the 
Current Sensor to Analog Channel B. 

3. Connect cables from the output of the 750 to the banana plug receptacles on the lower 
right side of the circuit board (red to the sin wave marked output, black to ground). 

 

MEASUREMENTS 

 

Part 1: Measuring the Resistance of a Single Resistor 
1. Hook up the circuit as you determined it should be set up in Pre-Lab #1 (to 

measure the voltage across and current through a single resistor driven by the 
“variable battery.”) 

2. Record V and I for 1 second. (Press the green “Go” button above the graph).  
During this time the battery will switch between putting out 1 Volt and 0 Volts.   

 

Question 1: 
When the battery is “on” what is the voltage drop across the resistor and what is the 
current through it?  What is the resistance of the resistor (calculate it from what you just 
measured, do NOT figure it out from the color code). 

 

 

 

 

 

 

Part 2: Resistors in Parallel 

1. Hook up the circuit as you determined it should be set up in Pre-Lab #2 (to 
measure the voltage across and current through the first resistor connected in 
parallel to a second resistor) 

2. Record V and I for 1 second. (Press the green “Go” button above the graph).  
During this time the battery will switch between putting out 1 Volt and 0 Volts.   
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Question 2: 
When the battery is “on” what is the voltage drop across the resistor and what is the 
current through it?  Did these values change from Part 1?  Why or why not?   

 

 
 
 
 
 
 
Part 3: Measuring Voltage and Current in an RC Circuit 
3A: Using a Single Resistor 

1. Create a circuit with the first resistor and the capacitor in series with the battery 

2. Connect the voltage sensor (still in channel A) across the capacitor 

3. Record the voltage across the capacitor V and the current sourced by the battery I 
(Press the green “Go” button above the graph).  During this time the battery will 
switch between putting out 1 Volt and 0 Volts.   

 

Question 4: 

Using the two-point method (which you calculated in Pre-Lab #3a), what is the time 
constant of this circuit?   Using this time constant, the resistance you measured in 
Question 1 and the typical expression for an RC time constant, what is the capacitance of 
the capacitor? 

 

 

 

 

 

Question 5: 
Using the logarithmic method (which you calculated in Pre-Lab #3b), what is the time 
constant of this circuit?   Using this time constant, what is the capacitance of the 
capacitor? 
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3B: Using Two Resistors in Series 
1. Put the second resistor in series with the first resistor and capacitor 

2. Connect the voltage sensor (still in channel A) across the capacitor 

3. Measure the current sourced by the battery (Press the green “Go” button above 
the graph). 

 

Question 6: 
Using one of the two methods used above, what is the time constant of this new circuit?  
What must the resistance of the second resistor be? 

 

 

 

 

Part 4: Measure Resistance and Inductance Without a Core 
1. Connect cables from the output of the 750 to either side of the coil (using the 

clips) 

2. Make sure that the core is removed from the coil 

3. Record the current through and voltage across the battery for a fraction of a 
second. (Press the green “Go” button above the graph). 

 

Question 7: 
What is the maximum current during the cycle?  What is the EMF generated by the 
inductor at the time this current is reached? 

 

 

 

 

Question 8: 

What is the time constant τ of the circuit? 
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Question 9: 
What are the resistance r and inductance L of the coil?  Calculate this using your answer 
to Pre-Lab #7d. 

 

 

 

Part 5: Measure Resistance and Inductance With a Core 
1. Insert the core into the center of the coil 

2. Record the current through and voltage across the battery for a fraction of a 
second. (Press the green “Go” button above the graph).   

 

Question 10: 
Does the maximum current in the circuit change due to the introduction of the core?  If it 
does, try to explain as clearly as possible why this happens (including why the change to 
bigger or smaller makes sense) 

 

 

 

 

 

Question 11: 

Does the time constant τ of the circuit change due to the introduction of the core?  If it 
does, try to explain as clearly as possible why this happens (including why the change to 
longer or shorter makes sense) 

 

 

 

 

 
 
Question 12: 
What are the new resistance r and inductance L of the coil? 
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Further Questions (for experiment, thought, future exam questions…) 
 
• What happens if we instead put the second resistor in parallel with the first? 
• What if we instead put the second resistor in parallel with the capacitor?  Does the 

initial current change?  The final current?  The final voltage (and hence charge) on 
the capacitor? 

• What if we change the order of the elements in the circuit (e.g. put the capacitor 
between the two resistors, or switch the leads from the battery)? 

• The ammeter is marked as having a 1 ohm resistance, small, but not tiny.  Can you 
see the effects of the ammeter resistance in the circuits of part 1 and 2?  Can you 
measure the voltage drop across the ammeter?  Does this make the measurement of 
the current through the resistor inaccurate? 

• What happens if we put a resistor R in series with the coil?  In parallel with the coil? 
• What happens if you make the battery switch on and off with a period shorter than the 

time constant of the circuit?  Would you still be able to determine the inductance L 
and resistance r of the coil using the same method? 

• What happens if you only partially insert the core into the coil?  Can you 
continuously adjust the core’s effects or there an abrupt jump from one behavior to 
another?  Would another core (like your finger) have the same effects? 

• If the coil were made of some superconducting material, what would its resistance 
be?  Would the EMF you measure be any different?  Would the potential difference 

from one side of the inductor to the other ( )b

a
V d∆ = − ⋅∫ E s  be any different?   
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