8.022 (E\&M) - Lecture 1

Gabriella Sciolla

Topics:

- How is 8.022 organized?
- Brief math recap
- Introduction to Electrostatics

Welcome to 8.022!

- 8.022: advanced electricity and magnetism for freshmen or electricity and magnetism for advanced freshmen?
- Advanced!
- Both integral and differential formulation of E\&M
- Goal: look at Maxwell's equations

$$
\begin{array}{ll}
\vec{\nabla} \cdot \vec{E}=4 \pi \rho & \vec{\nabla} \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \\
\vec{\nabla} \cdot \vec{B}=0 & \vec{\nabla} \times \vec{B}=\frac{4 \pi}{c} \vec{J}+\frac{1}{c} \frac{\partial \vec{E}}{\partial t}
\end{array}
$$

... and be able to tell what they really mean!

- Familiar with math and very interested in physics
- Fun class but pretty hard: 8.022 or 8.02 T ?

Everything You Always Wanted to Know About 8.022 But Were Afraid to Ask. http://web.mit.edu/8.022/www/

Staff and Meetings

Lecturer	Prof Cabriels Sciollia
Reciratices	Pot Erk Kinseviaidts

Lecture	Prot Sesuila	Tuest Thit	9.30-1100 4 AM
Rec Section *1	Prot Karcrvomisis	Mon \& Wed	10.11 AM
Roe Sertion ${ }^{\text {a }}$	Prof Katavounidi	hlow \& Wed	$11.12 \mathrm{~A} \mathrm{H}^{\text {d }}$
Rec. Suctive 23	Proc Kitrucumite	Tuw * Thar	2.3 PM
Rec secrive 54	Proc Korarucuinitis	THe A Thi	3.4 PMI

Textbook

E. M. Purcell

Electricity and Magnetism
Volume 2 - Second edition

- Advantages:
- Bible for introductory E\&M for generations of physicists
- Disadvantage:
- cgs units!!!

Problem sets

- Posted on the 8.022 web page on Thu night and due on Thu at 4:30 PM of the following week
- Leave them in the 8.022 lockbox at PEO
- Exceptions:
- Pset 0 (Math assessment) due on Monday Sep. 13
- Pset 1 (Electrostatiscs) due on Friday Sep. 17
- How to work on psets?
- Try to solve them by yourself first
- Discuss problems with friends and study group
- Write your own solution

Grades

How do we grade 8.022?

- Homeworks and Recitations (25\%)
- Two quizzes (20\% each)
- Final (35\%)
- Laboratory (2 out of 3 needed to pass)

NB: You may not pass the course without completing the laboratories!
More info on exams:

- Two in-class (26-100) quiz during normal class hours:
- Tuesday October 5 (Quiz \#1)
- Tuesday November 9 (Quiz \#2)
- Final exam
- Tuesday, December 14 (9 AM - 12 Noon), location TBD

All grades are available online through the 8.022 web page

...Last but not least...

Come and talk to us if you have problems or questions

- 8.022 course material
- I attended class and sections and read the book but I still don't understand concept xyz and I am stuck on the pset!
- Math
- I can't understand how Taylor expansions work or why I should care about them...
- Curriculum
- is 8.022 right for me or should I switch to TEAL?
- Physics in general!
- Questions about matter-antimatter asymmetry of the Universe, elementary constituents of matter (Sciolla) or gravitational waves (Kats) are welcome!

Your best friend in 8.022: math

- Math is an essential ingredient in 8.022
- Basic knowledge of multivariable calculus is essential
- You must be enrolled in 18.02 or 18.022 (or even more advanced)
- To be proficient in 8.022, you don't need an A+ in 18.022
- Basic concepts are used!
- Assumption: you are familiar with these concepts already but are a bit rusty...

> Let's review some basic concepts right now!

NB: excellent reference: D. Griffiths, Introduction to electrodynamics, Chapter 1.

Derivative

- Given a function $f(x)$, what is it's derivative?

$$
d f=\frac{\partial f}{\partial x} d x
$$

- The derivative $\frac{\partial f}{\partial x}$ tells us how fast f varies when x varies.
\rightarrow The derivative is the proportionality factor between a change in x and a change in f.
- What if $f=f(x, y, z)$?

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z
$$

Gradient

Let's define the infinitesimal displacement $d \vec{l}=d x \hat{x}+d y \hat{y}+d z \hat{z}$
$d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \bullet(d x, d y, d z)=\nabla f \bullet d \vec{l}$
Definition of Gradient:

$$
\operatorname{grad} f \equiv \nabla f \equiv \frac{\partial f}{\partial x} \hat{x}+\frac{\partial f}{\partial y} \hat{y}+\frac{\partial f}{\partial z} \hat{z} \equiv\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)
$$

Conclusions:

- ∇f measures how fast $f(x, y, z)$ varies when x, y and z vary
- Logical extension of the concept of derivative!
- f is a scalar function but ∇f is a vector!

The "del" operator

Definition:

$$
\vec{\nabla} \equiv\left(\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial z} \hat{z}\right) \equiv\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)
$$

Properties:

- It looks like a vector
- It works like a vector
- But it's not a real vector because it's meaningless by itself. It's an operator.
How it works:
It can act on both scalar and vector functions:
- Acting on a scalar function: gradient $\vec{\nabla} f$ (vector)
- Acting on a vector function with dot product: divergence $\vec{\nabla} \bullet \vec{f}$ (scalar)
- Acting on a scalar function with cross product: curl $\vec{\nabla} \times \vec{f}$ (vector)

Divergence

Given a vector function $\vec{v}(x, y, z)$

$$
\vec{v}(x, y, z) \equiv v_{x} \hat{x}+v_{y} \hat{y}+v_{z} \hat{z} \equiv\left(v_{x}, v_{y}, v_{z}\right)
$$

we define its divergence as:

$$
\operatorname{div} \vec{v} \equiv \vec{\nabla} \bullet \vec{v} \equiv \frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}
$$

Observations:

- The divergence is a scalar
- Geometrical interpretation: it measures how much the function $\vec{v}(x, y, z)$ "spreads around a point".

Divergence: interpretation

Calculate the divergence for the following functions:

Does this remind you of anything?

Electric field around a charge has divergence .ne. 0 !

div $\mathrm{E}>0$ for + charge: faucet

$\operatorname{div} \mathrm{E}<0$ for - charge: sink

Curl

Given a vector function $\vec{v}(x, y, z)$

$$
\vec{v}(x, y, z) \equiv v_{x} \hat{x}+v_{y} \hat{y}+v_{z} \hat{z} \equiv\left(v_{x}, v_{y}, v_{z}\right)
$$

we define its curl as:

Observations:

$$
\vec{\nabla} \times \vec{v} \equiv\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right|
$$

- The curl is a vector
- Geometrical interpretation: it measures how much the function $\vec{v}(x, y, z)$ "curls around a point".

Curl: interpretation

Calculate the curl for the following function:

This is a vortex: non zero curl!

Does this sound familiar?

Magnetic filed around a wire :

An now, our feature presentation: Electricity and Magnetism

The electromagnetic force:

 Ancient history...- 500 B.C. - Ancient Greece
- Amber ($\varepsilon \lambda \varepsilon \chi \tau \rho o v=$ "electron") attracts light objects
- Iron rich rocks from $\mu \alpha \gamma v \varepsilon \sigma \iota \alpha$ (Magnesia) attract iron
- 1730 - C. F. du Fay: Two flavors of charges
- Positive and negative
- 1766-1786 - Priestley/Cavendish/Coulomb
- EM interactions follow an inverse square law:
- Actual precision better than $2 / 10^{9}$! $\quad F_{e m} \propto \frac{q_{1} q_{2}}{r^{2}}$
- 1800 - Volta
- Invention of the electric battery

The electromagnetic force: ...History... (cont.)

- 1820 - Oersted and Ampere
- Established first connection between electricity and magnetism
- 1831 - Faraday
- Discovery of magnetic induction
- 1873 - Maxwell: Maxwell's equations
- The birth of modern Electro-Magnetism
- 1887 - Hertz
- Established connection between EM and radiation
- 1905 - Einstein
- Special relativity makes connection between Electricity and Magnetism as natural as it can be!

The electromagnetic force:
 Modern Physics!

- The Standard Model of Particle Physics
- Elementary constituents: 6 quarks and 6 leptons

- Four elementary forces mediated by 5 bosons:

\longrightarrow| Interaction | Mediator | Relative Strength | Range (cm) |
| :---: | :---: | :---: | :---: |
| Strong | Gluon | 10^{37} | 10^{-13} |
| Electromagnetic | Photon | 10^{35} | Infinite |
| Weak | $\mathrm{W}^{+/-}, \mathrm{Z}^{0}$ | 10^{24} | 10^{-15} |
| Gravity | Graviton? | 1 | Infinite |

The electric charge

- The EM force acts on charges
- 2 flavors: positive and negative
- Positive: obtained rubbing glass with silk
D1, D2, D4
- Negative: obtained rubbing resin with fur
- Electric charge is quantized (Millikan)
- Multiples of the $\mathbf{e}=$ elementary charge
- $\mathbf{e}=1.6021^{-19} \mathrm{C}$ (SI), 4.80310^{-10} esu (cgs)
- $Q_{\text {electron }}=-\mathbf{e} ; Q_{\text {proton }}=+\mathbf{e}$
- Electric charge is conserved
- In any isolated system, the total charge cannot change
- If the total charge of a system changes, then it means the system is not isolated and charges came in or escaped.

Coulomb's law

Charge q_{2}

$$
\vec{F}_{2}=k \frac{q_{1} q_{2}}{\left|r_{21}\right|^{2}} \hat{r}_{21}
$$

Charge q_{1}

- Where:
- \vec{F}_{2} is the force that the charge q_{2} feels due to q_{1}
- \hat{r}_{21} is the unit vector going from q_{1} to q_{2}
- Consequences:
- Newton's third law: $\vec{F}_{2}=-\vec{F}_{1}$
- Like signs repel, opposite signs attract

Units: cgs vs SI

- Units in cgs and SI (Sisteme Internationale)

	cgs	SI
Length	cm	m
Mass	g	Kg
Time	s	s
Charge	electrostatic units (e.s.u.)	Coulomb (C)
Current	e.s.u./s	Ampere (A)

- In cgs the esu is defined so that $k=1$ in Coulomb's law \rightarrow

$$
1 \text { dyne }=\frac{(1 \mathrm{esu})^{2}}{(1 \mathrm{~cm})^{2}} \rightarrow 1 \text { esu }=\mathrm{cm} \sqrt{\text { dyne }}
$$

- In SI , the Ampere is a fundamental constant
- $\mathrm{k}=1 /\left(4 \pi \varepsilon_{0}\right)=8.9910^{9} \mathrm{~N} \mathrm{C}^{-2} \mathrm{~m}^{2}$
- $\varepsilon_{0}=8.8 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$ is the permittivity of free space

Practical info: cgs - SI conversion table

	SI Units		CGS units	
Energy	1 Joule	$=$	$10^{7} \mathrm{erg}$	
Force	1 Newton	$=$	10^{5} dyne	"3"=2.9979... $=$ c
Charge	1 Coulomb	$=$	(3) $\times 10^{9} \mathrm{esu}$	
Current	1 Ampere	$=$	" 3 " $\times 10^{9} \mathrm{esu} / \mathrm{sec}$	
Potential	"3" $\times 10^{2}$ Volts	$=$	1 statvolt	
Electric field	"3" $\times 10^{4}$ Volts/m	$=$	1 statvolt/cm	
Magnetic field	1 Tesla	$=$	10^{4} gauss	
Capacitance	1 Farad	=	" 9 " $\times 10^{11} \mathrm{~cm}$	
Resistance	"9" $\times 10^{11} \mathrm{Ohm}$	=	$1 \mathrm{sec} / \mathrm{cm}$	
Inductance	" 9 " $\times 10^{11}$ Henry	$=$	$1 \mathrm{sec}^{2} / \mathrm{cm}$	

- FAQ: why do we use cgs?
- Honest answer: because Purcell does...

The superposition principle: discrete charges

The force on the charge Q due to all the other charges is equal to the vector sum of the forces created by the individual charges:

$$
\vec{F}_{Q}=\frac{q_{1} Q}{\left|r_{1}\right|^{2}} \hat{r}_{1}+\frac{q_{2} Q}{\left|r_{2}\right|^{2}} \hat{r}_{2}+\ldots+\frac{q_{N} Q}{\left|r_{N}\right|^{2}} \hat{r}_{N}=\sum_{i=1}^{i=N} \frac{q_{i} Q}{\left|r_{i}\right|^{2}} \hat{r}_{i}
$$

The superposition principle:

continuous distribution of charges

What happens when the distribution of charges is continuous?
Take the limit for $q_{i} \rightarrow d q$ and $\Sigma \rightarrow$ integral:

$$
\vec{F}_{Q}=\sum_{\mathrm{i}=1}^{\mathrm{i}=\mathrm{N}} \frac{\mathrm{q}_{\mathrm{i}} \mathrm{Q}}{\left|\mathrm{r}_{\mathrm{i}}\right|^{2}} \hat{\mathrm{r}}_{\mathrm{i}} \rightarrow \int_{\mathrm{V}} \frac{\mathrm{dqQ}}{|\mathrm{r}|^{2}} \hat{\mathrm{r}}=\int_{\mathrm{V}} \frac{\rho \mathrm{dV} \mathrm{Q}}{|\mathrm{r}|^{2}} \hat{\mathrm{r}}
$$

where $\rho=$ charge per unit volume: "volume charge density"

The superposition principle:
continuous distribution of charges (cont.)

- Charges are distributed inside a volume V:

$$
\vec{F}_{Q}=\int_{\mathrm{V}} \frac{\rho \mathrm{dV} \mathrm{Q}}{|\mathrm{r}|^{2}} \hat{\mathrm{r}}
$$

- Charges are distributed on a surface A:

$$
\vec{F}_{Q}=\int_{\mathrm{A}} \frac{\sigma \mathrm{da} \mathrm{Q}}{|\mathrm{r}|^{2}} \hat{\mathrm{r}}
$$

- Charges are distributed on a line L:

$$
\vec{F}_{Q}=\int_{\mathrm{L}} \frac{\lambda \mathrm{dl} \mathrm{Q}}{|\mathrm{r}|^{2}} \hat{\mathrm{r}}
$$

Where:

- $\rho=$ charge per unit volume: "volume charge density"
- $\sigma=$ charge per unit area: "surface charge density"
- $\lambda=$ charge per unit length: "line charge density"

Application: charged rod

P : A rod of length L has a charge Q uniformly spread over it. A test charge q is positioned at a distance a from the rod's midpoint.
Q: What is the force F that the rod exerts on the charge q ?

$$
\begin{aligned}
& \quad \text { Answer: } \quad \vec{F}=\frac{Q q}{a{\sqrt{a^{2}+\left(\frac{L}{2}\right)^{2}}}^{2}} \hat{y} \\
& \text { September } 8,2004
\end{aligned}
$$

Solution: charged rod

- Look at the symmetry of the problem and choose appropriate coordinate system: rod on x axis, symmetric wrt $x=0$; a on y axis:

- Symmetry of the problem: $F / / y$ axis; define $\lambda=Q / L$ linear charge density
- Trigonometric relations: $x / a=\operatorname{tg} \theta ; a=r \cos \theta \rightarrow d x=d \theta / \cos 2 \theta ; r=a / \cos \theta$
- Consider the infinitesimal charge dF_{y} produced by the element dx :

$$
d F_{y}=d F \cos \theta=\frac{\lambda d x}{r^{2}} q \cos \theta=\lambda q \frac{\frac{a d \theta}{\frac{\cos ^{2} \theta}{a^{2}}} \cos \theta=\frac{\lambda q}{a} \cos \theta d \theta .}{\cos ^{2} \theta}
$$

- Now integrate between $-\mathrm{L} / 2$ and $\mathrm{L} / 2: \quad \vec{F}=\hat{y} \int_{-L / 2}^{L / 2} \frac{\lambda q}{a} \cos \theta d \theta=\frac{Q q}{a{\sqrt{a^{2}+\left(\frac{L}{2}\right)^{2}}}^{2}} \hat{y}$

Infinite rod? Taylor expansion!

Q: What if the rod length is infinite?
P: What does "infinite" mean? For all practical purposes, infinite means \gg than the other distances in the problem: $\mathrm{L} \gg \mathrm{a}$:
Let's look at the solution:

$$
\vec{F}=\frac{Q q}{a{\sqrt{a^{2}+\left(\frac{L}{2}\right)^{2}}}^{2}} \hat{y}
$$

Taylor expand using $(2 a / L)^{2}$ as expansion coefficient remembering that

$$
(1 \pm x)^{n}=1 \pm \frac{n x}{1!}+\frac{n(n-1) x^{2}}{2!} \pm \ldots \text { for } x^{2}<1
$$

and

$$
(1 \pm x)^{-n}=1 \mp \frac{n x}{1!}+\frac{n(n+1) x^{2}}{2!} \mp \ldots \text { for } \mathrm{x}^{2}<1
$$

\rightarrow

$$
F=\frac{\frac{\lambda L q}{a}}{\frac{L}{2}\left(1+\frac{2 a}{L}\right)^{\frac{1}{2}}}=\frac{\lambda q}{2 a}\left(1+\left(\frac{2 a}{L}\right)^{2}\right)^{-\frac{1}{2}}=\frac{\lambda q}{2 a}\left(1-\frac{1}{2}\left(\frac{2 a}{L}\right)^{2}+\ldots\right) \sim \frac{\lambda q}{2 a}
$$

Rusty about Taylor expansions?

Here are some useful reminders...
Exponential function and natural logarithm

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \text { for all } x \\
& \ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n} \quad \text { for }|x|<1
\end{aligned}
$$

Geometric series:

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad \text { for }|x|<1
$$

Trigonometric functions:

$$
\begin{aligned}
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} \quad \text { for all } x \\
& \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \quad \text { for all } x
\end{aligned}
$$

