8.022 (E\&M) - Lecture 11

Topics:

- Introduction to Special Relativity
- Length contraction and Time dilation
- Lorentz transformations
- Velocity transformation

Special relativity

- Ready for the challenge?
- Special relativity seems easy but it's not!
- A new way of thinking that often goes against intuition
- It will take some time to "digest it", but believe me: it's worth the effort!
- Why do we need it in 8.022 ?
- Weren't you frustrated last time when magnetic forces came out of nowhere?
- Special relativity naturally explains them in terms of electric forces seen from in a reference frame in motion
- This is important for everybody
- Physics majors: first of many iterations on a crucial topic
- Non Physics majors: chance to know what you are missing
- Don't forget: you are still in time...

The principles of special relativity

- Formulated in 1905 by A. Einstein
- Incredible but true:
no Nobel Prize for this!
- Based upon 2 postulates
- The laws of physics are the same for all reference frames
- The speed of light is the same (c) in all reference frames
- (Inertial) Reference frame
- System of coordinates in which the observer is non accelerating (inertial = non accelerating)

Reference frames: examples

- Situation
- A train is moving with velocity
v w.r.t. to a station
- A table is anchored to the train
- A ball is falling from the table

- We can identify 3 systems of reference and 3 observers:
- Observer 1: sitting on a bench at the station
- Observer 2: sitting on the table on the train
- Observer 3: a bug sitting on top of the falling ball
- Who are the observers in an inertial reference frame?
- Observers 1 and 2
- Observer 3 is not: the ball is falling with acceleration g

Is time the same in all reference frames?

- These (apparently) innocent assumptions have amazing consequences such as time is not absolute!
- Problem
- The train is moving with velocity $\mathbf{v} / / \mathrm{x}$ axis
- Observer 1: standing in the train
- Observer 2: at the station

- Observer 1 flashes a pulse of light vertically to a photosensor mounted on the floor of the train
- Both observers measure the time between when the light is emitted and when the light reaches the sensor

Will the 2 observers measure the same time?

Time in different reference frames

- Let's calculate time measured by the 2 observers
- Train reference frame (observer 1)
$\left\{\begin{array}{l}\text { Distance traveled by light: } \mathrm{h} \\ \text { Velocity of light: } \mathrm{c}\end{array} \Rightarrow \Delta t=\Delta t_{1}=\frac{h}{c}\right.$

- Station reference frame (observer 2)
$\begin{cases}\text { Distance traveled by light: } \mathrm{h}^{\prime}=\sqrt{\mathrm{h}^{2}+\left(\mathrm{v} \Delta \mathrm{t}_{2}\right)^{2}} & \Delta t^{\prime}=\Delta t_{2}=\frac{h^{\prime}}{c} \\ \text { Velocity of light: } \mathrm{c} & \end{cases}$
$\left(\Delta t_{2}\right)^{2}=\left(\frac{h^{\prime}}{c}\right)^{2}=\frac{h^{2}+\left(v \Delta t_{2}\right)^{2}}{c^{2}}=\Delta t_{2}{ }^{2}+\frac{v^{2}}{c^{2}} \Delta \mathrm{t}_{2}{ }^{2} \Rightarrow \Delta t_{1}=\Delta t_{2} \sqrt{1-\frac{v^{2}}{c^{2}}}$
Defining $\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \Rightarrow \Delta t^{\prime}=\gamma \Delta t$

Time dilation

- We just derived a very important result!
- Gamma factor: $\gamma \equiv \frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\frac{1}{\sqrt{1-\beta^{2}}}>1 \quad$ with $\beta \equiv \beta_{v} \equiv \frac{v}{c}$
- Since $\Delta \mathrm{t}^{\prime}=\gamma \Delta \mathrm{t} \rightarrow \Delta \mathrm{t}^{\prime}$ is always larger than $\Delta \mathrm{t}$
- $\Delta \mathrm{t}^{\prime}=$ time measured by the observer in the station who sees the clock in motion
- Δt = time measured by the observer on the train, at rest wrt the clock
- Conclusion:

Clocks in motion run slower (time dilation) $\quad \Delta t^{\prime}=\gamma \Delta t$

Length in different reference frames

- Problem 2
- Now observer 1 flashes a pulse of light horizontally from left end of the train
- The light is reflected by a mirror on the right end wall and detected by a photosensor on the left wall

What is the length of the train measured by each observer?

Length in train reference frames

- For observer in train reference frame
- Events we are interested in: emission and reception of light
- Time in between the two: $\Delta t=\Delta t_{\text {train }}$
- Length of the train:
$\mathrm{L}=\frac{c \Delta t}{2} \Rightarrow \Delta t=\frac{2 L}{c}$

L

Length in the station reference frame

- Calculate separately $\Delta \mathrm{x}_{1}(\mathrm{~L} \rightarrow \mathrm{R})$ and $\Delta \mathrm{x}_{2}(\mathrm{R} \rightarrow \mathrm{L})$

$$
\begin{aligned}
& \Delta t_{1}^{\prime}=\left(L^{\prime}-v \Delta t_{1}^{\prime}\right) / c \\
& \Delta t^{\prime}=\left(L^{\prime}+v \Delta t^{\prime}{ }_{2}\right) / c
\end{aligned}
$$

- Δt_{1} is shorter because train and light move in opposite directions
- Δt_{2} is longer because train and light move in the same direction
- $L^{\prime}\left(t^{\prime}\right)=$ length (time) measured from station reference frame
- Rearrange terms: $\left\{\begin{array}{l}\Delta t^{\prime}{ }_{1}=\frac{L^{\prime}}{c+v} \\ \Delta t^{\prime}{ }_{2}=\frac{L^{\prime}}{c-v}\end{array}\right.$

Length contraction

- Total time in the station reference frame $=$ sum of $\Delta t^{\prime}{ }_{1}$ and $\Delta t^{\prime}{ }_{2}$:

$$
\begin{gathered}
\Delta t^{\prime}=\Delta t_{1}^{\prime}+\Delta t_{2}^{\prime}=\frac{L^{\prime}}{c-v}+\frac{L^{\prime}}{c+v}= \\
=L^{\prime} \frac{2 c}{c^{2}-v^{2}}=L^{\prime} \frac{2 c}{c^{2}\left(1-\frac{v^{2}}{c^{2}}\right)}=\frac{2 L^{\prime} \gamma^{2}}{c}
\end{gathered}
$$

- Remember how time dilates: $\Delta t^{\prime}=\gamma \Delta t \rightarrow$

$$
\frac{2 L^{\prime} \gamma^{2}}{c}=\Delta t^{\prime}=\gamma \Delta t=\gamma \frac{2 L}{c} \Rightarrow L^{\prime}=\frac{L}{\gamma}
$$

- Since $\gamma>1 \rightarrow$

Moving objects appear contracted (length contraction)

Summary so far

- Assume Special Relativity postulates hold:
- The laws of physics are the same for all reference frames
- The speed of light is the same (c) in all reference frames
- Consequences:
- Time dilation
- clocks in motion run slower $\Delta t^{\prime}=\gamma \Delta t$
- Length contraction
- moving objects appear contracted $L^{\prime}=\frac{L}{\gamma}$
- REALLY??? Can we check this experimentally???

Application:

Cosmic Ray Muons

- Cosmic ray muons:
- Cosmic rays are energetic particles (mainly protons) coming from somewhere in the Universe
- When they hit the atmosphere they will produce showers of particles
- μ are of particular interest because they are very penetrating and have a long lifetime ($2.2 \mu \mathrm{~s}$)
- Question: Can muons produced in the upper atmosphere reach the ground?
- Input:
- Muon's velocity $=99.99 \%$ of velocity of light c
- Atmosphere $\sim 20 \mathrm{Km}$ thick
G. Sciolla - MIT
8.022 - Lecture 11

Application:

Cosmic Ray Muons (2)

- Inputs:
- $\mathrm{V}_{\mu}=99.99 \%$ of velocity of light c , atmosphere $\sim 20 \mathrm{Km}$
- Non relativistic approach:
- $\Delta \mathrm{l}=0.9999 \mathrm{c} \Delta \mathrm{t}=0.6 \mathrm{Km}<20 \mathrm{Km}$: NO, they cannot reach the ground
- Relativistic approach
- $\gamma=1 /$ sqrt $\left(1-v^{2} / c^{2}\right) \sim 71$

Relativity: same phyiscs in all reference frames!

- Approach 1: our perspective
- $\tau_{\mu}=2.2 \mu \mathrm{~s}$ in muon's reference frame
- In our reference frame: $\tau^{\prime}=\tau / \gamma=71 \times 2.2 \mu \mathrm{~S}=156 \mu \mathrm{~S}$
\rightarrow Now muon can travel: $\Delta l=42 \mathrm{Km}$: OK!
- Approach 2: muons' perspective
- The $\Delta l^{\prime}=20 \mathrm{Km}$ of atmosphere appear contracted to a relativistic μ
- $\Delta \mathrm{l}=\Delta \mathrm{l}^{\prime} / \gamma=20 \mathrm{Km} / 71 \sim 0.3 \mathrm{Km}$ that can be traveled with $\tau=2.2 \mu \mathrm{~s}$: OK!

More on Cosmic Ray Muons

- The number of cosmic muons detected at sea level and on the top of Mount Everest are different. By how much?
- Hypotheses:
- Muons are produced in the upper atmosphere: $\sim 20 \mathrm{Km}$
- $\beta=0.9999 \rightarrow \gamma=1 / \operatorname{sqrt}\left(1-v^{2} / c^{2}\right) \sim 71$
- Mount Everest ~ 8 Km
- Muons decay exponentially $N(t)=N_{0} \exp (-t / \tau)$

- Choose 1 RF and stay with it
- $\tau_{\mu}^{\prime}=156 \mu \mathrm{~s}$ in our R.F.
- At sea level:
- $\mathrm{L}=20 \mathrm{Km} \rightarrow \mathrm{T}=66 \mu \mathrm{~S} \rightarrow \mathrm{~N}_{\text {sea }}=\mathrm{N}_{0} \exp (-66 / 156)=0.65 \mathrm{~N}_{0}$
- On Mount Everest:

$$
\text { - } \mathrm{L}=12 \mathrm{Km} \rightarrow \mathrm{~T}=40 \mu \mathrm{~s} \rightarrow \mathrm{~N}_{\text {Everest }}=\mathrm{N}_{0} \exp (-40 / 156)=0.77 \mathrm{~N}_{0}
$$

\rightarrow At sea level expect $\sim 15 \%$ less cosmic μ than on Mount Everest: OK!

How do lengths perpendicular to v transform?

- Thought experiment
- Train moving towards a tunnel with velocity $v=0.9 c$
- Height of train in train's RF: $h_{\text {train }}=3.5 \mathrm{~m}$
- Height of tunnel in tunnel's RF: $h_{\text {tunnel }}^{\prime}=4.0 \mathrm{~m}$
- If we have Lorentz contractions: $L^{\prime}=\mathrm{L} / \gamma$
- $\gamma=1 /$ sqrt $\left(1-0.9^{2}\right)=2.29$
- In tunnel's reference frame: the train moves with $\beta=0.9$
$\rightarrow h_{\text {train }}^{\prime}=h_{\text {train }} / \gamma=3.5 / 2.29=1.5 \mathrm{~m} \rightarrow$ no problem: it will fit!
- In train's reference frame: tunnel moves with velocity $\beta=0.9$
$\rightarrow \mathrm{h}_{\text {tunnel }}=\mathrm{h}_{\text {tunnel }}^{\prime} l \gamma=4 / 2.29=1.7 \mathrm{~m}<\mathrm{h}_{\text {train }} \rightarrow$ they will smash!
\rightarrow Different observers come to different conclusions
\rightarrow against relativity principle! \rightarrow Lorentz contraction cannot happen

Lorentz transformation

- "Time dilation" and "Length contraction" are consequences of the so called "Lorentz transformation"
- Consider 2 inertial reference frames: 0 and O^{\prime}
- 0^{\prime} is moving w.r.t. 0 with velocity $\mathbf{v} / / x$ axis where
- (x, y, z, t) the coordinate in the 0 reference frame
- ($x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}$) the coordinate in the 0^{\prime} reference frame

- Lorentz transformation:
- Linear transformation that relates the coordinate in the 2 R.F.
- Why linear? Because reference frames are inertial
G. Sciolla - MIT 8.022 - Lecture 11

Lorentz transformation (2)

- The most general form for a linear transformation:
- z and y do not change because $\mathbf{v} / / \mathrm{x}$

$$
\rightarrow \text { ignore them in the following }
$$

- Goal: calculate coefficients A,B,C,D

- First requirement:
- 0 and O^{\prime} overlap at $\mathrm{t}=0$: At $\mathrm{t}=\mathrm{t}^{\prime}=0, \mathrm{x}=\mathrm{x}^{\prime}=0$
- For 0 , the origin of 0^{\prime} moves away with velocity $\mathbf{v} \rightarrow$

For 0 , the origin of O^{\prime} moves away with velocity $\mathbf{v} \rightarrow$
Substitute in (1) $\Rightarrow 0=A v t+B t \Rightarrow B=-v A$$\Rightarrow\left\{\begin{array}{l}x^{\prime}=A(x-v t) \\ t^{\prime}=C x+D t\end{array}\right.$

- For O', the origin of O moves away with velocity $\mathbf{- v} \rightarrow$

Substitute in (3): $x^{\prime}=A(x-v t)=-A v t$. From (4): $x^{\prime}=-v t^{\prime}=-v(C x+D t)-v D t$

$$
\Rightarrow D=A \Rightarrow\left\{\begin{array}{l}
x^{\prime}=A(x-v t)(3) \\
t^{\prime}=C x+A t(5)
\end{array}\right.
$$

Lorentz transformation (3)

- Second requirement:
- Send a light pulse along the x direction at $t=0$
- After a time t the coordinates of the light pulse are $x=c t$ and $x^{\prime}=c t$. Substitute in (3) and use (5):

$$
\left\{\begin{array}{l}
c t^{\prime}=x^{\prime}=A(x-v t)=A(c t-v t) \\
c t^{\prime}=c(C x+A t)=c(C c t+A t)
\end{array} \Rightarrow c(C c t+A t)=A(c t-v t) \Rightarrow C=-A \frac{v}{c^{2}}\right.
$$

$$
\Rightarrow\left\{\begin{array}{l}
x^{\prime}=A(x-v t) \tag{3}\\
t^{\prime}=A\left(t-\frac{v}{c^{2}} x\right)
\end{array}\right.
$$

Lorentz transformation (4)

- Third requirement:
- Send a light pulse along the y direction at $\mathrm{t}=0$
- After a time t the coordinates of the light pulse are ($x=0 ; y=c t$) in 0 ; in 0^{\prime} the total displacement is: $x^{\prime 2}+y^{\prime 2}=\left(c t^{\prime}\right)^{2}$. Substitute (3) and (6):
$x^{\prime 2}+y^{\prime 2}=\left(c t^{\prime}\right)^{2}$
$A^{2}(x-v t)^{2}+y^{2}=c^{2} A^{2}\left(t-\frac{v}{c^{2}} x\right)^{2}$
Since $x=0$ and $y=c t \Rightarrow A^{2}(v t)^{2}+(c t)^{2}=c^{2} A^{2} t^{2}$
$\Rightarrow A=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}} \equiv \gamma$

$$
\Rightarrow\left\{\begin{array}{l}
x^{\prime}=\gamma(x-v t) \\
t^{\prime}=\gamma\left(t-\frac{v}{c^{2}} x\right)
\end{array}\right.
$$

Lorentz transformation: summary

Summarizing: when 0^{\prime} moves wrt 0 with velocity $+v / / x$ axis

- To go from 0 (at rest) to O^{\prime} (in motion):

$$
\left\{\begin{array}{l}
x^{\prime}=\gamma(x-v t) \\
t^{\prime}=\gamma\left(t-\frac{v}{c^{2}} x\right)
\end{array}\right.
$$

- To go from O^{\prime} (in motion) to O (at rest), just change the sign of the velocity:

$$
\left\{\begin{array}{l}
x=\gamma\left(x^{\prime}+v t^{\prime}\right) \\
t=\gamma\left(t^{\prime}+\frac{v}{c^{2}} x^{\prime}\right)
\end{array}\right.
$$

- The other coordinates (y and z) are not affected

Transformation of velocity

- Consequence of Lorentz transformations
- Observer in motion 0^{\prime} shoots a bullet with velocity $u^{\prime}{ }_{x} / /+x$ axis
- What is the velocity of the bullet u_{x} measured by 0 ?

$$
\begin{aligned}
& u_{x}=\frac{d x}{d t}=\frac{d\left(\gamma\left(x^{\prime}+v t^{\prime}\right)\right)}{d\left(\gamma\left(t^{\prime}+\frac{v}{c^{2}} x^{\prime}\right)\right)}=\frac{d x^{\prime}+v d t^{\prime}}{d t^{\prime}+\frac{v}{c^{2}} d x^{\prime}} \\
& =\frac{d x^{\prime} / d t^{\prime}+v}{1+\frac{v}{c^{2}} d x^{\prime} / d t^{\prime}}=\frac{u^{\prime}+v}{1+\frac{v u_{x}^{\prime}}{c^{2}}}
\end{aligned}
$$

- Conclusion:

$$
u_{x}=\frac{u_{x}^{\prime}+v}{1+\frac{v u_{x}^{\prime}}{c^{2}}} \quad \text { and }
$$

$$
u^{\prime}{ }_{x}=\frac{u_{x}-v}{1-\frac{v u_{x}}{c^{2}}}
$$

Velocity not // to v

- How do we sum velocity not // to the relative motion of the 2 R.F.?
- Observer in motion 0^{\prime} shoots a bullet with velocity u^{\prime} perpendicular to \mathbf{v}
- What is the velocity of the bullet u_{x} measured by 0 ?

$$
\begin{aligned}
& u_{y}=\frac{d y}{d t}=\frac{d y^{\prime}}{d\left(\gamma\left(t^{\prime}+\frac{v}{c^{2}} x^{\prime}\right)\right)}=\frac{d y^{\prime}}{\gamma\left(d t^{\prime}+\frac{v}{c^{2}} d x^{\prime}\right)} \\
& =\frac{d y^{\prime} / d t^{\prime}}{\gamma\left(d t^{\prime}+\frac{v}{c^{2}} d x^{\prime}\right) / d t^{\prime}}=\frac{u_{y}^{\prime}}{\gamma\left(1+\frac{v u^{\prime} x}{c^{2}}\right)}
\end{aligned}
$$

- Conclusion:

$$
u_{y}=\frac{u^{\prime}{ }_{y}}{\gamma\left(1+\frac{v u^{\prime}}{c^{2}}\right)} \text { and } \quad u^{\prime}{ }_{y}=\frac{u_{y}}{\gamma\left(1-\frac{v u_{x}}{c^{2}}\right)}
$$

Summary and outlook

- Today:
- Principle of Special Relativity and its amazing consequences
- Length contraction and Time dilation
- Lorentz transformations
- Velocity transformation (v always < c)
- Next time:
- More on Relativity:
- How to transform electric fields and forces
- Prove that E and B are intimately connected

