8.022 (E\&M) - Lecture 17

Topics:

- Discussion of Exam 2 and make-up exam
- Back to E\&M:
- RCL circuits: recap undriven RCLs, driven RCLs, inductance

Last time

- What happens when we put inductors in circuits?
- RL circuits: exponential solutions

- LC circuits: oscillatory solution

- RCL circuits are particularly interesting
- Let's see them in some more detail...

Undriven RCL circuits: recap

- Kirchoff's second rule:

$$
L \frac{d^{2} Q}{d t^{2}}+R \frac{d Q}{d t}+\frac{1}{C} Q=0
$$

- Does it look familiar?

$$
m \frac{d^{2} x}{d t^{2}}+k_{f} \frac{d x}{d t}+k_{e} x=0
$$

- Mechanics: harmonic oscillator!

$R C L$	Mechanics	Interpretation
$L^{2} d^{2} Q / d t^{2}$	$m a=m^{2} x / d t^{2}$	$L \sim$ m: inertia term
$R d Q / d t$	$k_{f} v=k_{f} d x / d t$	$R \sim k_{f} \rightarrow$ friction (damping) term
$1 / C Q$	$k_{e} x$	$1 / C \sim k_{e} \rightarrow$ elastic term due to spring

Undriven RCLs: solution

- Differential equation governing loop:

$$
\frac{d^{2} Q}{d t^{2}}+\frac{R}{L} \frac{d Q}{d t}+\frac{1}{L C} Q=0
$$

- Solve using complex number notation:

$$
\tilde{Q}(t)=e^{\beta t}=e^{-\alpha t} e^{i \omega t}
$$

NB: $\beta=-\alpha+i \omega$ is a complex number, with α and ω real
$e^{-\alpha t}=$ damping term, $e^{i \omega t}=$ oscillatory term
Throw this into the equation and we get a quadratic equation in β :

$$
\beta^{2}+\beta \frac{R}{L}+\frac{1}{L C}=0 \Rightarrow \beta=-\frac{R}{2 L} \pm \sqrt{\frac{R^{2}}{4 L^{2}}-\frac{1}{L C}}
$$

RCL circuits: solution

When $\frac{R^{2}}{4 L^{2}}-\frac{1}{L C}=0$ critical damping (fastest way to damp an oscillator).

RCL in weak damping limit

- Initial conditions: $\mathrm{Q}(0)=\mathrm{Q}_{0}=\mathrm{A} \cos \left(\phi_{0}\right)$ and $\mathrm{I}(0)=0=\mathrm{A} \omega_{0} \sin \phi_{0} \Rightarrow A=Q_{0} ; \phi_{0}=0$

$$
\Rightarrow\left\{\begin{array}{l}
Q(t) \sim Q_{0} e^{-\frac{R}{2 L} t} \cos \left(\omega_{0} t\right) \\
I(t) \sim \omega_{0} Q_{0} e^{-\frac{R}{2 L} t} \sin \left(\omega_{0} t\right)
\end{array}\right.
$$

- Graphical representation of solution:

G. Sciolla - MIT

Energy

- Energy of the circuit in the weak damping limit:

$$
\begin{aligned}
& U_{C}(t)=\frac{Q^{2}(t)}{2 C}=\frac{Q_{0}^{2}}{2 C} e^{-R t / L} \cos ^{2} \omega_{0} t \\
& U_{L}(t)=\frac{1}{2} L /(t)^{2}=\frac{1}{2} \omega_{0}^{2} L Q_{0}^{2} e^{-R t / L} \sin ^{2} \omega_{0} t=\frac{Q_{0}^{2}}{2 C} e^{-R t / L} \sin ^{2} \omega_{0} t \\
& \Rightarrow U(t)=U_{L}(t)+U_{C}(t)=\frac{Q_{0}^{2}}{2 C} e^{-R t / L}\left(\sin ^{2} \omega_{0} t+\cos ^{2} \omega_{0} t\right)=\frac{Q_{0}^{2}}{2 C} e^{-R t / L}
\end{aligned}
$$

- Since $Q^{2}{ }_{0} / 2 C=$ total energy stored initially in the system
\rightarrow U decreases exponentially over time: as expected!

Quality Factor

- Definition 1: the quality factor measures how many times the circuit oscillates before it loses a certain amount of energy
In the time $\tau=L / R$ the energy decreases by $\Delta U(\mathrm{t})=1 / \mathrm{e}$
The oscillation is $\omega \tau$ radians $\Rightarrow \mathrm{Q}=\omega \tau=\frac{\omega L}{R}$
- Definition 2: the quality factor measures the ratio between energy stored (in C and L) and average power dissipated (in R)
For an oscillation with frequency $\omega \Rightarrow \mathrm{Q}=\omega \frac{\text { Energy stored }}{\langle\text { Power> }}=\omega \frac{L /_{0}{ }^{2} / 2}{R /_{0}{ }^{2} / 2}=\frac{\omega L}{R}$
- Q factor can be defined for any system that creates vibrations.
- Acoustics: Q of a tuning fork is much higher than the Q of a table...

Today's goal:

Driven RCL circuits

- \odot is an AC e.m.f.
- AC voltage supplied to the circuit:

$$
e m f(t)=V_{0} \cos \omega t
$$

- Convenient assumption:
$V(t)=\operatorname{Re}[\tilde{V}(t)]$ with $\tilde{V}(t)=V_{0} e^{i \omega t}$
- NB: V_{0} is purely real!

- How to solve this? Just generalize what we used for DC!
- Sum of voltage drops in loop is equal to emf (Kirchoff \#2)

$$
\begin{aligned}
& V_{e m f}(t)=V_{R}(t)+V_{c}(t)+V_{L}(t) \\
& \tilde{V}_{\text {emf }}(t)=\tilde{V}_{R}(t)+\tilde{V}_{c}(t)+\tilde{V}_{L}(t)
\end{aligned}
$$

- The same current must pass through every circuit element

$$
I(t)=I_{R}(t)=I_{C}(t)=I_{L}(t)
$$

G. Sciolla - MIT
$\tilde{I}(t)=\tilde{I}_{R}(t)=\tilde{I}_{C}(t)=\tilde{I}_{L}(t)$

AC current

- Consider a B constant in magnitude and a loop rotating around its axis with angular velocity ω

- If S is the area of the loop: $\int_{S} \vec{B} \cdot d \vec{a}=B S \cos \theta=B S \cos \omega t$

$$
|e . m . f .|=\frac{1}{c} \frac{\partial}{\partial t}(B S \cos \omega t)=\frac{\omega}{c} B S \sin \omega t
$$

- This is how AC power is generated. In U.S.: $v=60 \mathrm{~Hz} \rightarrow \omega=377$
G. Sciolla - MIT
8.022 - Lecture 17

AC emf + resistor R

- Ohm's law holds for AC too:

$$
V(t)=V_{R}(t)=I(t) R
$$

- Let's plot $I(t)$ and $V(t)$ on the same graph:

\rightarrow In a resistor the voltage and the current are in phase (peak voltage occurs at the same time as peak current)

Reminder: phasor notation

Any complex number $\quad z=x+i y \quad$ with $\mathrm{i}=\sqrt{-1}$
can always be represented as the product of a real number (magnitude) and a complex exponential:

$$
\Rightarrow \quad z=r e^{i \theta} \quad \text { (Phasor representation) }
$$

where magnitude $r=\sqrt{x^{2}+y^{2}}$ and phase $\theta=\operatorname{arctg} \frac{y}{x}$

$$
\Rightarrow z=r(\cos \theta+i \sin \theta)
$$

and given Euler's relation:

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

which can be easily proved using Maclaurin expansion

AC emf +R with phasors

- The same information can be represented with phasors in the complex plane:

$$
\tilde{V}(t)=R \tilde{I}(t)
$$

\rightarrow In a resistor the voltage and the current are in phase In phase means that both phasors are at the same angle

AC emf + capacitor C

- Connect AC emf across a capacitor C :

$$
V(t)=V_{C}(t)=\frac{Q(t)}{C}
$$

- Since $V(t)=V_{0} \cos \omega t$ and $I(t)=d Q / d t:$

$I(t)=\frac{d Q(t)}{d t}=-\omega C V_{0} \sin \omega t=\omega C V_{0} \cos \left(\omega t+\frac{\pi}{2}\right)$
$\rightarrow I(\mathrm{t})$ LEADS $\mathrm{V}(\mathrm{t})$ by $90 \mathrm{deg} / \mathrm{V}(\mathrm{t})$ lags $\mathrm{I}(\mathrm{t})$ by 90 deg (maxima in $\mathrm{I}(\mathrm{t})$ occur before maxima in $\mathrm{V}(\mathrm{t})$)

Ohm's law revisited and Impedance

- Relation between I(t) and $\mathrm{V}(\mathrm{t})$ becomes more obvious when using phasor notation:

$$
V_{c}(t)=V_{0} \cos \omega t=\operatorname{Re}\left[\tilde{V}_{c}(t)\right] \quad \text { with } \quad \tilde{V}(t)=V_{0} e^{i \omega t}
$$

- For the current:
$I(t)=\omega C V_{0} \cos \left(\omega t+\frac{\pi}{2}\right)=\operatorname{Re}\left[\tilde{I}_{c}(t)\right]$
with $\tilde{I}(t)=\omega C V_{0} e^{i\left(\omega t+\frac{\pi}{2}\right)}=i \omega C V_{0} e^{i \omega t} \quad$ (remember: $\mathrm{e}^{\mathrm{i} \frac{\pi}{2}}=i$)
- Combining complex currents and voltages we can write:
$\tilde{V}(t)=\tilde{I}(t) Z_{C}$ (complex equivalent of Ohm's law)
where Z_{C} is the impedance of a capacitor: $Z_{C}=\frac{1}{i \omega C}$
G. Sciolla - MIT

AC emf + C: phasor representation

- Given

$$
\tilde{V}(t)=V_{0} e^{i \omega t} \quad \text { and } \quad \tilde{I}(t)=Z_{C} V_{0} e^{i \omega t}=i \omega C V_{0} e^{i \omega t}
$$

$\mathrm{V}(\mathrm{t})$ and $\mathrm{I}(\mathrm{t})$ can easily be represented in the complex plane:

$N B: I(t)$ is ahead of $V(t)$ by 90 degrees: I(t$)$ leads $\mathrm{V}(\mathrm{t})$ by 90 degrees

AC emf + inductor L

- Connect AC emf across an inductor L :

$$
V(t)=V_{L}(t)=L \frac{d l}{d t}
$$

- Since $\mathrm{V}(\mathrm{t})=\mathrm{V}_{0} \cos \omega \mathrm{t}$:

$$
\begin{array}{rlll}
\frac{d I}{d t}=\frac{V_{0}}{L} & \cos \omega t \quad \Rightarrow \quad I(t)=\frac{V_{0}}{\omega L} \sin \omega t=\frac{V_{0}}{\omega L} \cos \left(\omega t-\frac{\pi}{2}\right) \\
V(t) & & \ddots & \ddots
\end{array}
$$

$\rightarrow I(t)$ LAGS $V(t)$ by 90 degrees, or $V(t)$ LEADS $I(t)$ by 90 degrees (maxima in $\mathrm{I}(\mathrm{t})$ occur before maxima in $\mathrm{V}(\mathrm{t})$)
G. Sciolla - MIT 8.022 - Lecture 17

Impedance of inductors

- Using phasor notation:

$$
V_{c}(t)=V_{0} \cos \omega t=\operatorname{Re}\left[\tilde{V}_{L}(t)\right] \quad \text { with } \quad \tilde{V}(t)=V_{0} e^{i \omega t}
$$

- The current is:
$I(t)=\frac{V_{0}}{\omega L} \cos \left(\omega t-\frac{\pi}{2}\right)=\operatorname{Re}[\tilde{I}(t)]$
with $\tilde{\Gamma}(t)=\frac{V_{0}}{\omega L} e^{i\left(\omega t-\frac{\pi}{2}\right)}=\frac{V_{0}}{i \omega L} e^{i \omega t} \quad$ (remember: $\mathrm{e}^{-i \frac{\pi}{2}}=(i)^{-1}=-i$)
- Combining complex currents and voltages we can write:

$$
\tilde{V}(t)=\tilde{I}(t) Z_{L} \text { (complex equivalent of Ohm's law) }
$$

where Z_{L} is the impedance of an inductor: $Z_{L}=i \omega L$

AC emf + L: phasor representation

- Given $\tilde{V}(t)=V_{0} e^{i \omega t} \quad$ and $\quad \tilde{I}(t)=Z_{L} V_{0} e^{i \omega t}=\frac{V_{0}}{i \omega L} e^{i \omega t}$
$V(t)$ and $I(t)$ can easily be represented in the complex plane:

NB: I (t$)$ is 90 degrees behind $\mathrm{V}(\mathrm{t})$: $\mathrm{I}(\mathrm{t})$ lags $\mathrm{V}(\mathrm{t})$ by 90 degrees

Driven RCLs using inductance

- Inductance simplifies the study of driven RCL circuits
- Let's work with complex numbers and use Ohm's and Kirchoff's extensions

$$
\tilde{V}_{e m f}(t)=\tilde{V}_{R}(t)+\tilde{V}_{c}(t)+\tilde{V}_{L}(t)
$$

Since $\left\{\begin{array}{c}\tilde{V}_{R}(t)=R \tilde{I}(t) \\ \tilde{V}_{C}(t)=Z_{C} \tilde{I}(t)=\frac{1}{i \omega C} \tilde{I}(t) \quad \Rightarrow \tilde{V}_{e m f}(t)=\tilde{I}(t)\left(R+i\left(\omega L-\frac{1}{\omega C}\right)\right)=\tilde{I}(t) \tilde{Z}_{\text {tot }} \\ \tilde{V}_{L}(t)=Z_{L} \tilde{I}(t)=i \omega L \tilde{I}(t)\end{array}\right.$
where total impedance of the circuit is $\tilde{Z}_{\text {tot }} \equiv R+i\left(\omega L-\frac{1}{\omega C}\right)$

Driven RCLs: phasor notation

- The complex current can be written as

$$
\tilde{I}(t)=\frac{\tilde{V}_{\text {emf }}(t)}{Z_{\text {tot }}}=\frac{V_{0} e^{i \omega t}}{R+i\left(\omega L-\frac{1}{\omega C}\right)}
$$

- This can be written as:

$$
\tilde{I}(t)=\frac{V_{0} e^{i \omega t}}{Z_{\text {tot }}}=\frac{V_{0} e^{i \omega t}}{Z_{\text {tot }}^{*} Z_{t o t}^{*}} Z_{\text {tot }}^{*}=\frac{V_{0} e^{i \omega t}}{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}\left[R-i\left(\omega L-\frac{1}{\omega C}\right)\right]=I_{0} e^{i \omega t} e^{-i \phi}
$$

$$
\text { Remembering that } \mathrm{e}^{-\mathrm{i} \theta}=\cos \theta-i \sin \theta \Rightarrow\left\{\begin{array}{c}
\mathrm{I}_{0}=\frac{V_{0}}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}} \\
\operatorname{tg} \phi=\frac{\omega L-\frac{1}{\omega C}}{R}=\frac{\omega L}{R}-\frac{1}{\omega R C}
\end{array}\right.
$$

Dependence of ϕ from ω

\rightarrow high ω : I lags voltage by 90°
\rightarrow low ω : I leads voltage by 90°

AC motor (H26)

- 2 RL circuits driven by 60 Hz AC voltage
- Coil 1: $R=2.3 \Omega, L=1.5 \mathrm{mH}$
- Coil 2: $\mathrm{R}=2.5 \Omega, \mathrm{~L}=31 \mathrm{mH}$
- What is the $\Delta \phi$ between the 2 currents?
- $Z_{1}=R_{1}+i \omega L_{1}=2.3+i 3771.510^{-3}$
- $Z_{2}=R_{2}+i \omega L_{2}=2.5+i 3773110^{-3}$
$\rightarrow \Delta \phi=64$ degrees

- The difference in phase will create a rotating B field \rightarrow Eddie currents in the metal can will make it rotate!

Dependence of I_{0} from ω

RCL resonance (Demo L8)

- RCL circuit driven with variable frequency ω
- $\mathrm{L}=50 \mathrm{mH}$
- $\mathrm{C}=0.3 \mu \mathrm{~F}$

- Measure V_{R} on scope and tune frequency to maximize V_{R}
- What is the expect resonance frequency?

$$
\omega_{0}=\frac{1}{\sqrt{L C}}=8.2 \times 10^{3} \Rightarrow v=1.3 \mathrm{kHz}
$$

Demo L8: part 2

- Same RCL circuit driven with variable frequency ω
- Frequency is driven by a voltage $\mathrm{V}_{\text {in }}$
- $\mathrm{L}=50 \mathrm{mH}$
- $\mathrm{C}=0.3 \mu \mathrm{~F}$

- Display V_{R} vs on the scope while sweeping $\mathrm{V}_{\text {in }}$ - What do you expect to see?

Resonant RCL with light bulb (L6)

- RCL circuit driven by AC voltage
- C can be adjusted using set of switches
- L can be adjusted moving the Fe core inside a solenoid

- For each setting of C we can find $a n L$ that turn on the light bulb
- What is that L ?

$$
L=\frac{1}{C \omega^{2}}
$$

Summary and outlook

- Today:
- Undriven RCL circuits
- Energy stored and quality factor in weak damping limit
- Driven RCL AC circuits
- Simple solution when introducing complex impedance Z
- $Z_{R}=R$
- $\mathrm{Z}_{\mathrm{C}}=1 /(\mathrm{i} \omega \mathrm{C})$
- $Z_{L}=i \omega L$
- Next Tuesday:
- More on driven RCLs: power, resonances, filters...

